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Abstract

This thesis demonstrates and illustrates a way of developing reusable graphics software
components in Ada associated with a C++/ C library. The work was carried out using object-
oriented software development techniques that were used to analyze, design and implement a
partial flight simulator. The objective of this thesis was to present a way of building 1eusable

software components with Ada in a graphics application environment.

~ An object-oriented approach was taken in the development of a set of reusable graphics
softwa.re components for a flight simulator domain. A selection of a set of reusable software
components came from domain analysis. These componentr were analyzed in detail, *hen
redesigned to demonstrate and illustrate the thesis objective. Examples from design and
implementation demonstrate how Ada 83 was applied in bmldmg reusable graphxcs software
components associated with C++ routines, the llmltatlons of Ada 83, and how Ada9X

addresses these limitations.

ix




Toward

Reusable Graphics Components in Ada

L Introduction
1.1 Background

The problems with software today are typically associated with what some people call
the “software crisis”. “QOver the past ten years, the software crisis has cost the Department
of Defense alone tens of biilions of dollars” (42:2). As software development and maintenance |
costs have continued to rise at ever increasing rates, the use of standards as a solution to the
problem has beer. suggested. Standardization is far more important in the drive toward reuse
than special mechanisms particular languages may offer (14). Ada has been established as the
single, standardized programming language within the U.S. Department of Defense (DeD)).
The aim was to replace the vast number of languages and ad hoc techniques previously
in use with a standard programming paradigm to promote maintainability, reusability, and
portability. Program portability and reuse of software components are a major concern of
the DoD as well as the software industry since both use a wide vai iéty of hardware platforms.
However, a problem introduced by the newness of Ada is a lack of potential experieace in
several key areas. For example, the effective use of Ada in solving graphics problems with

DoD requirements.

A problem of this type is evident in the flight simulator software that was partiaily
developed by several Air Force Institute of Technology (AFIT) students (15, 26, 37). The
program was written in C++ rather than Ada, and it exhibits many of the engineering
difficulties that prompted the development of Ada. This thesis will investigate the use of
Ada to replace C++/C in a graphics application.
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1.2 Problem Statement

A problem with the use of Ada is a lack of potential experiénce in several key areas

such as the effcctive use of Ada in solving graphics problems with DoD requirements.

1.3 Hypothesis

The hypothesis of this thesis was that the advanced features of the Ada programming
‘language could be successfully interfaced with the advanced graphics libraries of a Silicon

Graphics System and existing C++ code.

1.4 Research Objective

The overall goal of this research was to investigate and to demonstrate Ada’s applica-
bility as an imp.ementation language for a reusable graphical software component using an
object-oriented pproach. During the course of the investigation, two of the following Ada

features were examined:

e What problems exist with Ada 83 in building reusable graphics software components

using an object-oriented approach, and how these problems are addressed in Ada 9X,

e How to connect Ada programs io existing C++ code.

1.5 Scope

The design and implementation of parts of a flight simulator will serve as the founda-
tion for the investigation of Ada's applicability as an implementation language for graphics

programs.

1.6 Assumptions

1.6.1 Hardware. 4. flight simulator written in C+4 was executed on a Silicon

Graphics IRIS (SGI), so access to an SGI was necessary.




1.6.2 Software. ~ We had access to the following sources of software:

o Ada: The Verdix Ada Development System (VADS) was used. VADS provides users
with a complete software environment for developing Ada language applications. VADS
provides users with useful libraries for interfacing to the Silicon Graphics Graphics

Library, Font Manager Library, operating system calis, etc.
e The C++ programming language: The AT/T C++ translator release 2.0 was used.

e Unix Standard Library: We were working within the Unix operating system. We

therefore were able to use Unix standard sysfem cails and “C” software libraries.

o Previous Thesis Effocts: The work done by Captain Simpson (37) for controlling the

input devices was reused in this thesis.

1.7 Approachf Methodology

An incremental approach was taken in the development of this thesis prcject. First,
the domain of the flight simulator was analyzed and a set of comiponents was selected.
Then the existing C++/C code and the object-oriented model were analyzed for design
of reusable software components. As a part of this, Ada bindings to C++ and C were
analyzed. Then alternatives for obtaining well-engineered reusable software components
were examined. Finally, the alternatives were analyzed, and the most effective one was

chosen and implemented.

1.8 Materials and Equipments

The following materials and equipment were used in this research.

o Target Machine : Silicon Graphics IRIS 4D Series

o Joystick : Microstick Joystick from CH Products
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1.9 Summary

As software development and maintenance costs have continued to rise at ever incieas-
ing rates, the use of standards as a solution to the problem has been suggestedi. Ada has
been established as the single, standardized programming language within the U.S. DoD to
replace the vast nurriber of languages and ad hoc techniques previously in use to promote
reusability, maintainability, and portability. This thesis examines previous thesis work on

flight simulator software implemented in C++, and then builds on this work using Ada.

The objective of this thesis is to demonstrate and illustrate the feasibility of building

well-éngineered reusable graphics software components in Ada.

1.10 Thesis Overview

This document contains five chapters. Chapter 2 is a literature review of object-
oriented technology, software réuse, and the contrasfs of Ada and C++/C. Chapter 3 out-
lines the process used to examine the problem as well as the design of reusable software
components. Chapter 4 describes detailed design and implementation strategies in building
a well-engineered reusable set of components in conjunction with C++ routines in a class

library. Chapter 5 includes a summary and conclusions.
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II. Literature Review -

2.1 Introduction

The purpose of this chapter is to aid in the understanding of the discussion contained
in the following chapters. This chapter begins with a description of the need for object-
oriented techniques, followed by concepts of the object-oriented paradigm with the basic
analysis and design concepts. This description is followed by a des'c'r‘iption of software reuse,
especially focusing on reuse of code components. The features of Ada and C++4/C are then
considered for similarities and contrasts. This is folloWed by a description of interfacing Ada

with C++/C and a description of the MICROSTICK device used in this study.

2.2 The Object-Oriented Paradigm

2.2.1 The Need for Object-Oriented Techniques. Among software engineers the
software crisis is a well known fact (8, 29). “The essence of the software crisis is simply that
it is much more difficult to build software than our intuition tells us it should be” (8:7). In
general, the software crisis is characterized by many problems, while managers’ responses
for sof‘t‘ware development concentrate on the “bottom-line” issues such as: 1) inaccurate
schedule and cost estimates; 2) the lack of “productivity” from software engineers; and 3)
the lack of software quality (29). The major cause of the software crisis is the complexity of
software and software itself (7). The previous situation highlighted the need for developing
and maintaining large complex software systems in a competitive and dynamic environment,
and it has driven interest in new approaches to software design and development. Thebgoals
(modifiability, efficiency, relicbility, understandability) and principles (modularity, abstrac-
tion, localization, information hiding, uniformity, completeness, confirmability) of software
engineering as stated by Goodenough, Ross, and Irvine (16) and Booch (8), provide the
foundation upon which software will be designed in the future. “Object-oriented design,
object-oriented programming, and object-based programming are methods that suppert the

goals and principles of software engineering” (31:76).
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place, little consensus has been reached as to exactly what is meant by “object orienta-

tion”, even among leaders like Booch (7), Meyer (24), and Stroustrup (38). Henderson

and Edwards (17:146) define the object-orieﬁted paradigm as follows: “The object-oriented

procedures, but de-emphasizes the procedures, stréssing instead the encapsulation of data
- and procedural features together, exemplified by the clear and concise specification of the
module interface”. The paradigm sprang from language, has matured into deéign, and has
recently moved into analysis. Several general concepts that are strongly related with the
00 paradigm will be discussed in this chapter: objects, classes, abstraction, inheritance, en-
capsulation, polymorphism, and dynamic binding. Although these concepts are basic to the
‘object-oriénted paradigm, the various object-oriented communities often associate different

specifics with each concept. This section focuses on those concépts.

2.2.2.1 Objects. Booch (7) defines an object as follows:

An object is a tangible or visible entity that exhibits some well-defined behavior.
It has state, behavior, and a unique identity; the state of an object encom-
passes all of the properties of the object plus the current values of each of these
. : properties, the behavior is how an object acts and reacts, in terms of its state

N changes and message passing, and identity is that property of an object which
distinguishes it from all other objects.

Objects, well-defined and limited, may contain both data structures and actions to be per-
formed on the structures. The basic principles behind objects are: 1) abstraction, 2) encap-

- sulation, 3) modularity, 4) hierarchy, and 5) polymorphism (27).

1) Abstraction is the process of defining an object in just the right amount of detail
for the situation. The goal is to use just enough detail to differentiate a new object from
other objects at the same level. The easiest way to do this is to portray the operations the

object can perform before worrying about operations within the object.
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2) Encapsulation involves hiding information about an object from the user. It hides
the details of the implementation because the user doesn’t care how operations are imple-

mented, only how to use them.

3) Modularity follows the principle of divide and conquer: Divide the problem into
pieces and keep each piece of the solution in independent modules. The object is perfect for
modularity because it holds the data structures and op~-ations for each part of the solution.

The module is also loosely coupled because it is not tied closely to other parts of the program.

4) Hierarchy means that objects are abstracted in terms of the problem to be solved,
then described in more specific terms, with the objects adding characteristics or inheriting

others from existing objects.

5) Polymorphism refers to the ability of an object to assume multiple roles and shapes.
For instance, ”overloéding” is a fancy term for the simple practice of using an operator for

more than one type of data.

2.2.2.2 Classes. A class is a set of objects that share a common structure

and common behavior. Korson (21:42) defined a class as follows:

Ideally, a class 1§ 2n implementation of an abstract data type. This means that the
implementation details of the class are private to the class. The public interface
of such a class is composed of two kinds of class methods. The first kind consists
of functions that return meaningful abstractions about an instance’s state, The
other kinds of methods are transformation procedires used to move an instance
from one valid state to another.

By grouping objects into classes, a problem can be abstracted. Class is the language construct

most commonly used to define abstract data types in object-oriented programming languages.

2.2.2.8 Abstraction. Abstraction is the fundamental concept of object ori-
entation. “An abstraction denotes the essential characteristics of an object that distinguish
it from all other kinds of objects and thus provides crisply defined conceptual boundaries,
relative to the perspective of the viewer” (7:39). Abstraction is one of the fundamental ways

that we humans cope with complexity. Abstraction encourages programmers and users to
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think about complex applications in abstract ‘terms. “The goal of abstraction lS to isolate
those aspects that are important for some purpose and suppress those aspects that are uniin-
portant” (32:16). There are two methods of abstraction: abstraction by speciﬁéation and

abstraction by parameterization (21).

Abstraction by specification abstracts the specification of an entity from its implemen-
tation. This type of abstraction is supported by virtually every object-oriented language.
The public interface of a class constitutes the specification of that class.. The interface

specifies the legitimate operators of the data contained in instances of the class.

Abstraction by parameterization abstracts the type of data to be manipulated from
the specification of how it is to be manipulated. This type of abstraction is supported by
most object-oriented languages at the operator level, but by only a few languages at the

class level.

2.2.2.4 Inheritance. Inheritance is a relation between classes. “Inheritance is
the sharing of attributes and operations among classes based on a hierarchivcal relationship”
(32:3). It is not provided by conventional languages. “Inheritance is a way of defining some
useful construct in a central place and then automatically broadcasting that construct to
all the places where it could help. New functionality is no more developed by coding each
line from scratch, but by inheriting some useful class and describing only how the new one
differs” (13:12). Inheritance not only supports reuse across systems, but it directly facilitates

extensibility within a given system.

2.2.2.5 FEncapsulation. Encapsulation is the way of building of methods
and data together within an object so that access to data is permitted only through the
object’s own methods (2:35). “Abstraction and encapsulation are complementary concepts:
abstraction focuses upon the outside view of an object and encapsulation - also known as
information hiding - prevents clients from seeing its inside view, where the behavior of the

abstraction is implemented” (7:45).
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2.2.2.6 Polymorphism. As Cardell (9) points out there are many kinds of
polymorphism, but in general, polymorphismn means the ability to take more than one form.
The same operation may apply to many different classes, that is, the same operation takes
on different forms in different classes. Because of this ability to refer to more than one class
of object, a polymorphic reference has both a dynamic and a static type associated with it

(21).

The dynamic type of a polymorphic reference may change from instant to instant
during the program execution. In strongly typed object-oriented environments, the run-time

system keeps all polymorphic references automatically tagged with their dynamic type.

The static type is determined from the declaration of the entity in the program text.
It is known at compile time and determines the set of valid types that the objéct can accept

at run-time.

2.2.2.7 Dynamic Binding.  The binding discussed in this chapter is the bind-
ing of a procedure call to the code to be executed in response to the call. Dynamié binding
means that binding is done later than compile-time, generally while the program is running.
“Dynamic binding is needed in loosely coupled collections where the customer’s code cannot
predict the type of data to be operated on until the code is being run” (13:14). Dynamic
binding is intrinsic to the very essence of a loosely coupled collection. “In the object-oriented
world, dynamic binding is associated with polymorphism and inheritance in that a proce-
dure call associated with a polymorphic reference may depend on the dynamic type of that

reference” (21:46).

2.2.2.8 Terminology. This discussion introduces key concepts and defini-
tions from the OO domain. Like any emerging technologies, OO has many proponents with
differing opinions. Since object-oriented methodologies are in their early stage, like the vari-
ous object-oriented programming languages, terminology for the object-oriented mechanisms

differs among methodologies (2:189).
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2.2.3 Object-Oriented System Life Cycle. - “At the most general level, three
phases to the lifelcycle are generally agreed upon: 1) analysis, 2) design and 3) construc-
tion/implementation” .(17:'143). Like a general software development life cycle, an object-
oriented development life cycie also has analysis, design, and implementation phases. Prob-

lems with traditional development using the classical life cycle include no iteration, no em- -

“ phasis on reuse, and no unifying model to integrate the phases (21). In contrast to the

common structured systems analysis and design based largely on top-down functional de-
composition, object-orientéd vana.lysis and design has many attributes of both top-down and,
perhaps gredominantly, bottom-up design. Since oﬂe of the aims of an OO implementation
is the develoﬁment of generic classes for storage in libraries, an approa,ch which considers
both top-down analysis and bbtto‘m-up design simultaneously is likely to lead to the most
robust software systemé (17:146). The object-oriented analysis and the object-oriented de-
sign phases work more closely together because of the commonality of the object model.
In one phase, the analyst identifies problem domain objects while in the next bhase, the
designer specifies additional objects necessary for a specific computer-based solution. The

design process is repeated for these implementation-level objects.

2.2.8.1 Basic Analysis Concepts. “Object-Oriented Analysis (OOA) is a
method of analysis that examines requirements from the perspective of the classes and objects
found in the vocabulary of the problem domain” (7:37). It is concerned with constructing
a precise, concise, understandable, and correct mod_él of the real w.orldf “The analysis
model serves several purpose.. It clarifies the requirements, it provides a basis for agreement
between the software requestor and the software developer, and it becomes the framework
for later design and implementation” (32:148). There are sévera,l OOA approaches (7, 10, 17,
32, 35) each with their own techniques. These methods can be summarized by the following

activities, which may overlap.

o Identify the classes/objects of problem space

e Identify the relationship between classes
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o Identify the attribut2s and methods of each class/object

o Specify the inter-object communication.

2.2.3.2 Basic Design Concepts.  This section describes the fundamentals of
the object-oriented design phase of the object-oriented software life cycle. The different point
of view between the procedural design paradigm (top-down functional decomposition) and
object-oriented design is that the procedural paradigm takes a task-oriented point of view,
while the object-oriented design paradigm takes a modeling point of view (21). Booch defines
object-oriented design (OOD) as follows. “Object-oriented design is a method of design
encompassing the process of object-oriented decomposition and a notation for depicting
both logical and physical as well as static and dynamic models of the system under design”
(7:37). The application design process begins at a top level and proceeds through class
identification to a low level andb then moves upward as low-level classes are designed baéed
on lower-level definitions. The object-oriented paradigm provides support for good design:
1) modularity, 2) information hiding, 3) weak coupling, 4) strong cohesion, 5) abstraction,
6) extensibility, and 7) integration (21). There are many sources of advice on what makes a

good design (10, 32).

2.2.8.83 Notation.  To do analysis and design, we need a way to picture the
things we want to build, a notation for modeling the structure of object-oriented software.
“Any graphical representation of the object-oriented\version of the overall software devel-
opment life cycle must take into account the high degree of overlap and implicit iteration”

(17:151) Various notations have been introduced by va\rious authors (7, 10, 24, 32).

2.2.4 Benefits and Drawbacks of the Object-Oriented Approach. Like a classical

approach, the object-oriented approach also has its benefits and drawbacks.

2.2.4.1 Benefits. The object-oriented paradigm offers the following benefits:

1) a way to manage complex software, 2) a “seamless” way to perform analysis, design
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and implementation, 3) reusability, 4) maintainability and 5) extensibility (37:2-28). Bocch
noted the following benefits by applying object-oriented design (7. |

¢ Exploits the expressive power of all object-based and object-oriented programming

languages
° Encpurages the reuse of software components
o Leads to systems that are more resilient to ché.nge
o Reduces development risk

o Appeals to the working of human cognition

2.2.4.2 Drawbacks.  Although the OO approach has valuable benefits, it also |

has some drawbacks that must be considered. There two acknowledged drawbacks to using

the object-oriented approach: 1) performance considerations, 2) start-up cost (7:216).

Early object-oriénted programming languages such as Smalltalk were interpreted and
thus inefficient compared to a conventional programming language (32:10). Subsequently,
performance sensitive systems could not be designed and coded in object-oriented languages.
Today, with the introduction of new languages, OOD systems have improved in performance.
Initial investments in education, tool support, reorganization, and management support are

necessary in order to eventually realize the benefits of QOD.

2.2 Reuse

Reuse is the use of previously acquired concepts (the reuse of ideas and knowledge) and
objects (the reuse of particular artifacts and components) in a new situation. It is the process
of building software systems from existing software rather than building software systems

from scratch. Very significant process has been made in the evolving field of software reuse.

The main motivation to reuse software artifacts is to increase software development and
maintenance productivity; this leads to higher quality, more reliable software, and conserva-

tion and preservation of software engineering expertise (14:3). Portability is a characteristic
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of software closely related to reusability. It refers to the extent to which a software compo-
nent can be used in multiple machine environments. Thus reusability includes portability in
the sense that portability is necessary to achieve reusability across multiple machine envi-

ronments at least at code level.

The U.S. DoD software engineering community is in its pursuit of software reuse, and
has seen evidence that the software reuse princ.iple, when integrated into acquisition practices
and software engineering processes, provides a basis for dramatic improvement in the way
software intensive systems are developed and supported over their lifecycle. Availability
of the Ada language has spurred interest in reuse, and Ada serves as the implementation
language in many reuse projects. At the highest level, the DoD vision for reuse is to drive the
DoD software community from its current “re-invent the software” cycle to a process-driven,
domain-specific, architecture-centric, library-based way of constructing software. The DoD’s

long-term strategy is to lead to the creation of a true “black-box™ components industry (28).

There is great diversity in the software engineering technologies that involve some form
of software reuse. Typically, reuse involves the abstraction, selection, specialization, 21d in-
tegration of artifacts, although different reuse techniques may emphasize or de-emphasize
certain of these. Krueger partitioned the different approaches to software reuse into eight
categories: high-level languages, design and code scavenging, source code components, soft-
ware schema, application generators, very high level languages, transformation systems, and

software architecture, analyzed them according to the following taxonomy (22:137).

e Abstraction: What type of sofiware artifacts are reused and what abstractions are

used to describe the artifacts?
e Selection: How are reusable artifacts selected for reuse?
o Specialization : How are generalized artifacts specialized for reuse?

o Integration: How are reusable artifacts integrated to create a complete software sys-

tem?
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2.3.1 Reuse in Design and Code Scavenging.  The reusable artifacts in scavenging
are source code fragments. The abstractions for these artifacts are inforrﬁ&l concepts that
a software developer has learned from previous expérience. When a software developer
recognizes that some part of a new application is similar to one previously written, a search for
existing code may lead to code fragments that can scavenged. Specialization of a scavénged
code may be done through manual editing. Integrating a scavénged code into a new context
may re(iuire some modification of the fragment,. the context, or both. In ideal cases of
scavenginvg,' large fragments of source code can be adapted without significant modification.
But in the worst case, lots of time can be wasted understanding, modifying, and debugging

a scavenged code rather than developing the equivalent software from scratch. |

2.9.2 Reuse in Source Code Components. Currently, the best abstractions for
reusable components are domain-specific concepts, such as those found in the math libraries.
The area of code reuse, including deliverable code, test code, simulation code, or etc. is the
highest potential for near-term payoff. There are two different categories of code components
for reuse - “passive components” or “building blocks”, which are used essentially unchanged,
and “dynamic components” or “generator”, which generate a product for reuse (18:83-84).
Although selection in domain-specific components is easy since components can be classified,
organized, and retrieved using well defined properties of the domain, the ease of selection
in a géneral-purpose component library depends on the degree of the abstfaction, classifi-
cation, and retrieval schemes. Generalized components with construction-time parameters
represent the most effective approach to component specification. Reusable components can

be specialized either by editing the source code directly or with mechanisms such as the

- Ada generic or inheritance in object-oriented languages. Ada generics provide a level of

abstraction that isolates the software developer from many implementation details. Ada
generics can be parameterized with language constructs such as data types, data objects,
and functions. Module interconnection languages such as Ada typically provide the frame-
work for integrating components. Ada can integrate source code components written in C,

FORTRAN, and assembly. Naming and name binding are important module interconnection
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issues in component reuse since reusable coniponents ace consiructed independently of any
particular context, which can present problems such that names impor’ed into and exported
from the component may crash or be incorrectly bound in the new system. Ada is a particu-
larly good candidate for implementing reusable components since Ada provides mechanisms

to overcome some of these naming preblems.

2.3.3 Reuse in Software Schemas. The sch~ma approachémphasizés the reuse
of algorithms, abstract data types, and higher lovel abstractions. It is a formal extension
to reusable software components. For example, some algorithm books provide a library of |
abstract descriptions for many basic computer science algorithnﬁs and data structures. Pro-
grammers can informally use these abstractions when writing source code. Large schema
libraries are difficult to use; however, automated assistance can help for schema selection.
Schemas are typically specialized either By substituting language constructs, code fragments,
or specification into parameterized parts of a schema or by choosing from a predefined enu-
meration of options. A simple approach to schema in.egration is to use a module inter-
connection language. For example, if a schema instantiation produces Ada package code,
an instantiated schema can be treated as a conventional Ada package. More sophisticated

schema integration techniques rely on semantic specifications.

2.8.4 Reuse in Software Architecture.  Software architectures are analogous to very
large-scale software schemas. Software architectures, however, focus on subsystems and their

interaction rather than data structures and algorithms.

2.3.5 Reusability in an Objec't-Or.iented Approach.  The object-oriented paradigm
combines design techniques and language features to provide strong support for reuse of
software modules. Reuse comes in a variety of forms. Some of the reuse in the object-
oriented paradigm is much the same as that in the procedural paradigm, bnt the.object-

oriented paradigm adds an additional type of reuse.
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Every time an instance of a class is created, reuse occurs. This is similar to the

declaration of a variable of a specific type. The major difference is that the resulting class

instance is a much more complex structure than a simple variable. An instance of a class
provides a combination of data structures and operators on those data structures. This is

similar to (but more general than) library reuse with the conventional paradigm.

Inheritance provides levels of support for reuse (21). As part of the high—level design
phase, inheritance serves as a means of modeling generalization/specialization relationships.
These relationships appear in the form of classifications. A chair may be \;iewed as a special
type of furnituré, as well as a general description of the more specific categories of rocki.ng

chairs, straight chairs, and reclining chairs. This high-level use of inheritance encourages the

- development of meaningful abstractions which, in turn, encourages reuse.

Often in actual design, the presence of mid-level abstractions, such as table and chair,
will be recognized and considered separately. The availability of an inheritance relation
enables the designer to “push higher”, to identify commonalty among abstractions, and to

produce higher-level abstractions (é.g., furniture) from this commonality. By identifying this

commonality and moving it to a higher abstraction, it becomes available to be reused later -

in the current design or in future designs. Filing cabinets and bookcases may be identified
later. Much of their description (attributes such as height, weight, color, etc.) may already
be available from the furniture abstraction. The benefits of this reuse prompt the designer

to search {\'or higher and higher levels of abstraction.

\ .

In the low-level design phase, inheritance supports the reuse of an existing class as the

basis for the definition of a new class. An existing piece of code can be copied to a new
file and modified to fit its new purpose. This inheritance mechanism does not establish any

connection between the old piece of code and the new code.

For ex }mple, algorithm reuse involves using the same algorithm across data structures.

Using the data abstraction supported by object-oriented technology, such an algorithm is
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implemented at a high level of a class hierarchy and becomes automatically available to

subclasses.

These mechanisms promote reuse by means of interface abstraction. An interface
specification is the most abstract reusable artifact of a software system. It consists of a set
of messages that embody a coordinated set of behaviors. Classes whose instances perform the
role implied by these behaviors must provide a behavior implementation. These instances

can then be used wherever this common behavior is expected.

2.4 The Features of Ada

This section provides a quick overview of the advanced feaztures of the Ada 'anguage.
The DoD designed Ada as a general-purpose language intended to embody and e force the
principles of software engineering in hopes of lowering the cost of the software life-cycle.
Ada’s objectives were not to extend the realm of things that computers can do, but to
provide a single way to do the things that are now done in numerous incomatible but
similar langnages (13:38). “Ada is a design language that is suitable for the design and
implementation phases of the software life cycle. Ada directly embodies, encourages, and

enforces modern software engineering principles and methodologies” (30:163).

2.4.1 The Object Oriented Capabilities of Ada.  Ada has been traditionally associ-
ated with Object-Oriented Design (OOD), which was exploited by Booch (7). However, OOD
can be exteﬁded more easily and smoothly throughiObject-O'riented Programming (OOP),
which has basically two additional features, inheritance and polymorphism, that cannot be
fully extended by object-based programming language such as Ada. Ada’s suppc -t for the
two additional features is less systematic than that found in C++, which fully supports these

features. Alternatively, one might think of OOP in terms of two programming paradigms,

which will be associated with OQOP:

e variant programming: new abstracts may be constructed from existing ones so that the

programmer need only specify the differences between the new and old abstractions.
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e class-wide programming: classes of related abstractions may be handled in a unified

fashion, such that the programmer may systematically ignore their differences when

appropriate (1).
Ada provides the basis for supporting object-oriented programming with variant and class-
wide programming in the form of derived types, subtypes, packages, and generic units.
Each of these has its limitations such as type inéonipa.tibility by de_ri\)ing from the parent
types, narrowing their applicability by subtyping, recompilation of the original abstraction
by breaking the original abstraction, and complicated generic parameters. Ada supports
several forms of static polymorphlsm generic formal types, subprogrammmg overloadmg,

and 1mp11c1t conversion of class-wide { real and mteger) literals.

Recognizing limitations, the Ada 9X program is preparing a refined version of Ada to

update the Ada standard in accordance with ANSI and ISO procedures under the Ada Joint

Program Office (AJPO). The current Ada 9X review process is adding changes to improve

Ada’s use in 00 development, programming-in-the-large and real-time programming. Ada

9X will provide improved support for OO development in several ways (n):

e subprograms as objects: dynamically selecting subprog:ams
e reducing the need for recompilation

e programming by specialization/extension: defining a new entity which can be used
anywhere the original one could be, in exactly the same Way without medification of

the original one.

Subprograms as objects provides the ability to associate operations (subprograms) with
objects, and to dynamically select and execute those operations, which is the basis for
run-time polymorphism. Programming by specialization/extension and reducing the need
for recompilation provides the ability to extend derived reuse, which is the basis for the

inheritance mechanism.
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2.4.2 The Reusability of Ada.  The Ada programming language has several mecb-

anisms which aia in the specification and development of reusable code. (19:486)

o Ada supports reusability through the package concept. This is a mechanism whereby
one can define an Abstract Data Type (ADT), and it supports the notion of information

hiding.

o Ada supports reusability through generics (generic procedures in Ada are mechanisms
i which preserve the virtues of typing, while eliminating the negative aspects). Generics
can be procedures or packages - but reusable generic packages are a more powerful

concept than that of procedures.

2.4.3 Foreign Language Interface.  One unique feature of Acia is its ability to in-
terface to other languages. The interface pragma allows an Ada program to call a program
written in another language such as C, FORTRAN or assembly language. An Ada program
calling a subprogram written iﬁ another language must include a declaration for that subpro-
gram, written in the usual Ada notation for subprogram declarations. The actual code in the
other language plays the role of an Ada subprogram body, so the Ada program includes an
interface pragma irstead of the actual subprogram body (11:807). An implementation may
restrict the use of the interface pragma. For example, it might establish a correspondence
between certain predefined Ada types and types in the other language and require that each

subprogram parameter and function result belong to one of these types.

2.5 The Features of C++

C++ is a strongly-typed language developed by Bjarne Stroustrup at AT&T Bell
Laboratories as an extension of C. The primary difference between C++ and C is the support

C++ provides for the following: (23:580)

¢ Inlining and overloading of functions.

o Ability to provide default argument values.
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o Argument pass-by-reference (in addition to the C language default pass-by-value). S /
e Support of template functions and classes.

o Support of abstract data types by providing for information hiding and the definition

of a public interface.
N Support for object-oriented ‘programming.

The language supports object-oriented concepts such as abstract data type, inheritance,

polymorphism, and dyn_amic binding (20:396).

o Abstract Data Type: C++ provides two constructs for defining an ADT. The first one

is an extension of the struct cdnstruct and the other is the class construct.

e Inheritance: C++ allows the hierarchy of class definitions to inherit both method and.

instance variables from existing class definitions. : /

o Overloading/ Overriding and Dyhamic Binding: C++ allows overloading of function
names and operators. It allows single polymorphism but not parametric polymorphism
(or genericity) which is supported by many object-oriented languages and also Ada.

C++ also supports dynamic binding through virtual functions.

2.6 Ada/C++ Similarities and Contrasts

Programming language selection is not the major cost driver in a software development
environment (14). But languages facilitating software engineering methods and principles
can produce software easier to learn and understand, easier to reuse, easier to change and
maintain, and easier to interface with other languages and CASE tools. Both Ada and

C++ are general-purpose languages of roughly similar power and have features that modern

e

software engineering practice considers indispensable: modularity, information hiding, ab-
straction, structuring tools for large programs, and various mechanisms for parameterizing d

software components. The following com;;a.rison and contrasts between Ada and C++ is
| based on current versions of the languages. For Ada, the language is defined by ANSI/MIL- ,
| o
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STD-1815A-1983. For C++, the language is defined by version 2.1 of the AT&T CFRONT

translator.

Comparing Ada and C-++ is not easy, if for no other reason than C++ is a language in
flux for which there is no stable definition, no approved standard reference, and no translator

validation.

C++ re.quires more knowledge than Ada, but this knowledge is ill-defined at the in-
_ terface between environment and language. This reduces portability and thus increases
maintenance costs more than comparable Ada software. C++ software is less reliable than
Ada since arrays in C++ are closely related to pointers, and the indexing operation is de-
scribed directly in terms of pointer arithmetic. The generic facility of Ada is an excelledt
model of type parameterization to maximize software reuse rather than C++, although C+-i-
provides a template which’ is close in spirit to Ada generics. C++ emphasizes ease of writing
rather than ease of reading. This makes C++ programs harder to transmit and maintain
(33:15). Ada has demonstrated maintainability and reliability for large-scale developmenf.
Ada is safer but less flexible than C++. Currently, Ada has not been used extensively 19
several key areas. A couple of important changes planned include extending Ada’s data abf-
straction capabilities, adding object-oriented programming features, and improving controfl
over concurrency for real-time apblications (1). |

C++ is already a widely accepted object-oriented language in the commercial area and
is becoming even more popular since it has a C and Unix base. C++ is highly flexible and

therefore less safe than Ada. The emerging C++ standards will help to increase portability
and maintainability of C++.

Table 2.1 shows some important language features and their relative support by the
two languages (6:2-9). Interfacing weli with other languages is an important attribute of
any programming language. The C++ language can invoke directly C run time libraries
and existing C scftware with C interfaces. Ada defines an optional pragma interface for

interfacing to other languages. Some advantages depend on their compiler support.
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Feature . Ada(only) | Ada(+) | Both(=) | C++(+) | C++(only)
Parameterized Types
Safe Types

Error Handling
Concurrency
External Interrupts
Compilation Management X
Strong Types X
Modularity

External 1/0

Extensible Typing
Overloading
Multilingual Support
Polymorphism
Inheritance

Subprogram Variables
Conditional Compilation

P P s s 4

Pl Pl <] X[ e

P PRl ] e

Table 2.1. Ada and C++ Support for Key Language Features

2.6.1 Features Where Ada has an Advantage.  The following paragraphs discusses
the features where the Ada language has an advantage over the C++ language (6:2-10).

o Parameterized Types : A parameterized mechanism is useful for building strongly

typed reusable component libraries. Ada provides this useful support through generics.

Although some users of the present versions of the C++ language provide their own

~ template preprocessors for this feature, it is not available commercially in C++.

o Safe Types : Ada provides run-time checks, array subscript variables and ra.riges. C++
does not provide bounds checking. C++ provides flexible dynamic memory allocation

which must be used carefully to prevent problems.

o Error Handling : For reliable and maintainable systems, a reliable standard mechanism
for handling errors is essential. Ada provides user defined exceptions and some useful

predefined exceptions for error handling.
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e Concurrency : Ada provides support for concurrency with tasks for the efficient im-

plementation of a large system.

o External Interrupts : Ada provides a standard mechanism for handling interrupts from

the external environment as task entry points.

e Compilation Management : Efficient management of compi!ztion depende.ncieskand
good compilation dependency information can not only save large amounts of com-
puter and human resources but also simplify the creation of software tools such as
configuration management tools, test generator and code analysis tools. These compt-

lation dependencies are well defined in Ada, but not as well defined in C++.

2.6.2 Features Where C++ has an Advantage.  Listed below are the features where
C++ language has an advantage over the Ada language. (6:2-10)

e Inheritance : C++ supports both single and multiple inheritance. This feature is
not available in Ada. The C++ inheritance is more powerful than the derived typed

mechanism in Ada. Ada inheritance is expected to appear in the Ada 9X language.

o Polymorphism Languages : C++ supports polymorphism through its inheritance mech-

anism. Inheritance and polymorphism are expected in Ada 9X.

e Subprogram Variables : C++ has pointers to functions. Pointers to subprograms are

expected in Ada 9X.

e Conditional Compilation : C++ supports conditional compilation, via the preprocessor

mechanism.

2.7 Ada Interfacing (Binding) with C++/C

In general, translating programs from other languages into Ada is straightforward if
the source language is one of the block-oriented languages such as C. However, it is more
desirable to make use of existing subprograms or libraries developed in some other language

from inside Ada programs without having to translate everything into Ada. There is a need
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in development of software systems for utilization of capabilities which are not inherently

supported by a chosen developmént language. For example, if a graphics capability was
required, the programmer typically used a specific vendor’s graphics interface. In order to
overcome this deficiency in a cost-effective mannex;, bindings are reduired. An interfacing
(binding) is a set of code which allows the use of software and hardware that provides some
capability required for a given application. In thé past, software systems tended to be built
around a specific product, which decreased portability. Standard interfaces were required

to provide portability. Ada provides mechanisms that allow the programmer to specify

interfacing which is no longer limited to a single machine. This section presents the naming .

convention, parameter passing method, and an approach to making existing libraries and

programs written in C++/C usable from Ada.

2.7.1 Ada Interface. Ada has a complicated naming convention for its objects
that can be accessed from another language. For example, subprbgram names are usually

encoded as follows: (12:21-25)

-A_subprogramnameLLXcc.parent

where:
subprogramname is the subprogram name.
LL is the line number of its definition.
X is S if defined in the spec and B for the body.
cc is the character number of its definition. -
parent is the name of the parent unit, without the _A_ prefix.

To access a Ada object, a user must be able to modify the Ada source code to know
where the subprogram is declared. Another big problem with the Ada naming convention
is that when you change the location of the subprogram in its source program, the external
name changes. Fortunately, Ada provides the pragma that you can use to specify an un-
changing external symbol name for variable and function. These pragmas are external_name,
interface, and interface_name. The pragma EXTERNAL_NAME allows users to specify an
external symbol name, or linkage name, for Ada variables or subprograms so that it can

be accessed from another language. The pragma INTERFACE allows users to call routines
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written in another language. The pragma INTERFACE.NAME allows users to access ex-
ternal objects such as common blocks, C global variables, and routines written in another

language.

Ada allows data to be passed by reference or by value using the formal argument
mode. To pass a parameter by reference users must use the in oui parameter mode. To pass
a parameter by value users must use the in mode. However, arrays and records must dlways

be passed by address.

There are a couple of restrictions with the pragma interface (12:24).

e The types of parameters for C routines must be scalar, access or the predefined type

" address, and all parameters must have mode in.

o The return types are limited to scalar, access or the predefined type address.

2.7.2 C Interface.  C has the single naming convention for external symbols, which
include function names and global variables. The C compiler prepends an underscore char-
acter (‘.") to external symbols. Additionally, function names and global variables produced
by the C compiler are unrestricted in length and case sensitive (12:15-16). For example, the

external symbols produced for the following code fragment are _add and _num3.

int add( int num1, int num?2)

{

extern int num3;
return (numl + num2 + num3);

}

C functions basically pass all parameters except arrays by value, which means that
only the contents of a parameter are passed to the called routine, not its address. Arrays
are passed by reference. However, C provides two operators users can use to work around

this parameter passing method: address operator (&) and indirection operator (*).




B
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2.7.83 C++ Interface. Like Ada, C++ generates symbols that do not simply
have underscores prepended and appended to a function name. Although a data types and
function parameter passing method in C++ are basically the same, function symbol names
usually have a return type and parameter data types encoded in them. Fortuné,tely, C++

provides a linkage specifier that causes C++ to generate a symbol name that conforms to

the C language interface. The AT&T C++ Language System Product Reference Manual

describes the following information about the linkage speciﬁ'er (3:40). Linkage to non-C++

code‘fragménts can be achieved using the following linkage specifier:

extern string-literal declaration

extern string-literal {declaration-list}

where: : i

string-literal can be “C” or “C++” to indicate whether a
declaration should have C or C++ linkage. Default is C++

declaration is a function or variable declaration ! ‘

declaration-list is a list of function and variable declarations
Linkage specifications nest. ‘A linkage specification does not establish a scope. A

linkage-specification may only occur in file scope. A linj age-specification for a class applies

to non-member functions first declared within it. A linkage-épeciﬁcation for a function also

to the implementation is an error.

- applies to functions declared within it. A linkage declaTtion with a string that is unknown

2.7.4 Ada Binding to C++/C Routines.  Use of the Ada langﬁage facilitates porta-
bility, as compared to other languages. The features of the Ada language support portability
through abstraction and information hiding. Ada packaging allows the encapsulation of both
data and operations into a single unit, the enforcement of strong typing and information hid-
ihg, the separation of the specification and body, and the isolation of the system dependent
features. The Ada packa.ge for calling the library functions or existing code gives the pro-

grammer basically the same functional entities and objects as the original.
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There is a series of procedures which are required to successfully develop a binding.
For a complete Ada interface to a library and existing codes using the same subprogram and
variable names provided in the original C++/C version, the following six steps are necessary

(34:156):

o Create parallel data types.
¢ Interface to exiernal routines.
¢ Interface to external data.
o Link to external libraries.
o Test/Debug the interface.

e Optimize the interface.

2.7.4.1 Create parallel data types. = Whenever access to a routine or variable
declared in an alternative language is required, any Ada variable used in conjunction with
the subroutine or variable is of a compatible data representation in both languages. When
creating Ada data types to parailel the types of other languages, the user should not assume
that the types or structures have the same im_pleméntation in Ada, even if they have the
same name; that is, a data structure declared in Ada must be identical to a data structure

declared in C++/C.

A way of creating parallel data types is to use a prior1 knowledge. There are some
types that the programmer knows are parallel between two language implementations from
reading the vendor’s documentation. Neither Ada nor C++ /C compilers are required to use
a particular size to represent any particular type, and an implementation is free to choose a

representation based on hardware considerations.

Another way of creating parallel data types is to use Ada representation specifications.
In Ada, we can define an exact duplicate of the physical layout of any data type in another

language once it is known. It can be done by Ada representation clauses. When the underly-
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ing representation of a type has no analogue in one language, the data type can be defined by

the programmer using Ada represertation specifications and UNCHECKED_CONVERSIONs.

The conversion of six different type categories can be described as follows. (41:PG4-2) |

o Simple Types: There are some simple Ada predefined types that correspond to C simple

types. When C++/C programs contain ambiguous assignments or uses of such types

or of integer/address conversion; the generic function UNCHECKED.CONVERSION

offers a method for controlled easing of type conversion. For example, to implement |

an Ada type to match a C++/C int type, a programmer could specify as follows:

— type C.int is range -(2+*15) .. (2%x15) - 1;
~ for C.int’size use 1‘6; |
— C.int.use : C_int;
The first line represents a type that has the same r.ange as the int type in C++/C. The

second line ensures that the same amount of storage is used. The third line declares a

variable. Other simple types with different representations can be constructed similarly.

Record Types: The same basic approach can be taken in the representation of record
types as with simple types. Both Ada and C++/C associate the record label with
a base address from which offsets to access individual components of records are cal-
culated. In Ada, as long as the record is composed of equivalent simple data types,
the offsets will be calculated similarly, and record structures will be identical. When
storage conventions are not so conveniently arranged, Ada representation specification

can be used for constructing records.

Array Types: Ada ~nd C++/C arrays are stored in row-major order. When defining
Ada array types that are parallel to C++/C array types, the standard representation
of an array in both languages is to associate the array label with the first component

and use this location to calculate an offset. The individual components should be com-
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patible structures. Otherwise, representation specifications should be used to assure

that indiv’ al component representations are identical.

Dynamic Array Types: In C++4/C, the size of a dynamic array is calculated by the
user, based on data known only to the user. C++/C arrays always start at index 0
while Ada arrays start with any index. Passing arrays from C++/C to Ada is possible
by creating an appropriate subtype for the value. If a C++/C array is passed and
must be preserved over an open scope, a fixed-length array must be used in the Ada

program, making the Ada array at lea,st. as large as any possible C++/C parameter.

Pointers and Address Types: Pointer and address types are implementation-speciiic.
But Ada’s tactic of using host conventions usually allows the use of Ada pointer and
address types parallel to their C++/C counterparts. Otherwise Ada representation

specifications can be used to tailor the size and range of the data type.

String Types : A character string in C++/C is represented by a pointer to the first
character in an array of bytes. By convention, strings in C++/C are terminated by
a null character and store no explicit length. In Ada however, a string is represented
by a packed array of type CHARACTFER with the maximum number of components
specified as part of type. A parallel type can be created using a declaration in Ada as

follows:

— type C_String is access STRING (1..INTEGER’LAST)

2.7.4.2 Interface to external routines.  Once parallel types have been estab-

lished, the next step is to gain access to external routines provided in the interface target

package. This is accomplished in a two stage procedure: first, equivalent Ada subprogram

specifications are written, and second, the linkage to the external routine is declared. The

first step can be a simple mapping of the external routine’s name and parameters into an

Ada subprogram specification or can involve the development of code to make the behavior

of the external routine compatible with Ada. The second step is accomplished through use

of the pragma INTERFACE and pragma INTERFACY_.NAME.
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2.7.4.3 Interface to external data.  The third step when building a complete

package from an existing C++/C library and program is to gain access to external variables
declared in C++/C from Ada. Some Ada compilers contain a pragma which allows the ac-
cessing of external objects directly, while others require the programmer to build an external

routine which returns the required data object as a parameter (34:159).

For example, the following vprograms illustrate interfacing between Ada and C.
C program:

char *gets ();
int atoi ();
int service_number;
~exterr void ada_put ();
test ()
{
char buf{80];
printf(” Enter an integer here: ™); "
get (buf);
service_.number = atoi(buf);
ada_put(servicenumber);

waddch(window win,char [])

} ‘
The printf call was replaced with ADA_PUT and an Ada package containing
the procedure ADA_PUT and interface declarations for the C entities were

written as follows.

with language;

package C_interface is
seivice_number : integer; _
pragma interface_name(servicenumber,C_SUBP_Prefix & "service_number”)

procedure waddstar(win : window; S : address);
procedure c_waddstr (win : window; str : address);

pragma interface( C, C_waddstr);
pragma interface_name(C_waddstr, C_SUBP_PREFIX & "waddstr™);
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procedure ADA_PUT(I : integer);
pragma external (C, ADA_PUT);
pragma external name(ADA_PUT, C.PREFIX & "ada_put”);

procedure main;
pragma interface(C,main);
pragma interface_name(main, C.SUBP_PREFIX & "test”);
end C_interface;
package body C_interface is
-this intermediate Ada module will convert an Ada string
-input into a c-string format before calling the C routine
procedure waddstr(win : window; S: string) is ‘
T: string(1..(S’last + 1));
begin
T(1..S'last) := S;
T(S’last + 1) := ascii.nul;
c.waddstr(win, T’address);
end waddstr;
procedure ADA_PUT (I : integer) is
begin
put(I);
end ADA_PUT;

end C_interface;

Now a simple Ada “wrapper” to call the original C functions is written
so that the linker a.ld can resolve all the references in the modules
and perform its usual elaboration order checks.

with C_interface; use C_interface;
procedure driver is
win : window;
begin
main;
waddstr(win,”hellow”);

end Driver;
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2.74.4 Link to Esternal Libraries.  The fourth step in the Ada interface is
the ability to link the routines and data types built in the previous steps with the external
libraries. It is typically required to place the names of the external object files in the link
path. For example, illustrated programs compiling both the C and Ada portions can be done
by compiling the C porf.ion first, then using the Ada linker to construct the ‘main’ program

driver and the C objects in the link.

-2.7.4.5 Test]/ Debug the Interface.  The fifth step is testing and debugging the
binding. Since a good binding will be used by a wide variety of software systems, the testing

and debugging should be done thoroughly in order to construct a reliable system.

2.7.4.6 Optimizé the Interface.  The final step in the interface process is
to reduce the overhead resulting from frequent subprogram calls to intermediate routines

written in Ada. The predefined pragma INLINE provides the so]ﬁtion.

2.7.5 Program Conversion. One modular approach is to write an Ada “wrap-

per” program that surrounds the subprograms in another language and allows them to be

gradually converted (41:PG4-12). Pragma INTERFACFE and pragma INTERFACE_.NAME
are useful for this gradual replacement with pragma EXTERNAL and pargma EXTER-
NAL_NAME that allow subprograms in other languages to call Ada subprograms, exactly
the reverse of the INTERFACE aﬁd INTERFACE_NAME pragmas.

The real benefit for the user is that new portions of large programs can be developed in

Ada, but existing, tested, working code need not be replaced wholesale. Individual modules

can be replaced by newly developed Ada code without undue restrictions on the language

of calling or called subprograms. An additional benefit is that once subprogram parameters

are defined in Ada, the compiler will perform its usual type checking across subprograms.
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2.8 The MICROSTICK

The MICROSTICK is 2 professional high quality point and select device. One of its
standard features includes a resolution of 1 part in 4096 and six types of movement. These
features allow users to change gears and use the MICROSTICK for both high-resolution
accuracy and fast poining specd. Tie MICRCSETIC

terminal via a 25-pin RS232 connector. The MICROSTICK outputs an 18 byte string of
ASCII characters. The outputs of MICROSTICK are described in the table 2.2. Byte 1

K is connected te a computer or a

corresponds to a delimiter, Byte 2 describes the state of button 2, etc.

Byte Byte 1 Byte 2 Byte 3 | Byte 4 Byte 5 Byte 6
What Delimiter | Button 1 Button 2 Button 3
Example | § 0 1 0

Byte Byte 7 Byte 8-11 | Byte 12 | Byte 13-16 | Byte 17-18

What x value y value Delimiter

Example 1513 0028 [cr][1f]

Table 2.2. Qutputs of MICROSTICK

This output allows easy interface to a microcomputer or a terminal. In addition, the

MICROSTICK microprocessor-based design allows for user-specified models of operations
|

that permit easy adaptation to most applications. The user’s manual describes the MICRO-

STICK arjjld suggests ways to realize its full potential.

The MICROSTICK can be controlled by Graphics, CAD/CAM or Text Editing soft-
ware. Hence, software controlling the MICROSTICK is a good candidate for use in this

research.

2.9 Summary

This chapter has introduced the features of the object-oriented paradigm, software

reuse, the features of Ada and C++ languages, and the MICROSTICK.

The object-oriented paradigm represents a more intuitive way to program than using

procedurally oriented techniques. The objeét-oriented approach is based upon the concepts:
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objects, classes, abstraction, inheritance, encapsulation, polymorphism, and dynamic bind-
irig. The object-oriented paradigm offers a way to manage the complexity inherent in a

software system, and supports the goals and principles of software engineering.

Reuse is the use of previously é.cquired cohcepts (the reuse of ideas and knowledge)
and objects (the reuse of particular artifacts and components) in a new situation. It is the
proceés of building software systems from existing software rather than building software
systems from scratch. The main motivation to reuse software artifacts is to increase software
develoipm:e_nt and maintenance productivity in order to obtain higher quality, more reliable
software, and conserve and preserve software engineering expertise. There is a great diversity
in the software engineering technologies that involve some ‘forfn of software reuse. Typically,
reuse involves the abstraction, selection, épecialization, and integration of artifacts, althbugh

different reuse techniques may emphasize or de-emphasize some of these.

Programming language selection is not the major cost driver in a software development

environment. But a language facilitating software engineering methods and principles can

produce software easier to learn and understand, easier to reuse, easier to change and main-
tain, and easier to interface with other languages and CASE tools. Both Ada and C++ are
general-purpose languages of roughly similar power. Both have features that modern soft-
ware engineering practicé considers indispensable such as modularity, information hiding,
abstraction, structuring tools for large programs, and various mechanisms for parametriz-

ing software components. C++ requires more knowledge than Ada, but this knowledge is

ill-defined at the interface between environment and language. This redlriéesﬁrporrrtrsalr)ﬂiii-ty and

thus increases maintenance costs over comparable Ada software. C++ software is less reli-
able than Ada since arrays in C++ are closely related to pointers, and the indexing operation
is described directly in terms of pointer arithmetic. The generic facility of Ada is an excel-
lent model of type parameterization to maximize software reuse, although C++ provides the
template which is close in spirit to Ada generics. C++ emphasizes ease of writing rather
than ease of reading. This makes C++ programs harder to transmit and maintain. Ada is

safer but less flexible than C++.
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Translating programs from other languages into Ada is straightforward if the source
language is one of the block-oriented languages such as C. However, it is more desirable
to make use of subprograms or libraries developed in some other language from inside Ada
programs without having to translate everything into Ada. For a complete Ada interface to

another language, the following six steps are necessary

o Create Ada data types.

o Interface to external routines.
o Interface to external data.

o Link to external libraries.

o Test/debug the interface.

o Optimize the interface.

The MICROSTICK is a professional high quality point and select device. The de-
vice allows users to change gears and use the MICROSTICK for both high-resolution accu-
racy and fast pointing speed. Connecting is done t‘hr‘ough a 25-pin RS5232 connector. The
MICROSTICK outputs an 18 byte string of ASCII characters. Software controlling the
MICROSTICK will be used in this research.
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III. Analysis/Design

3.1 Introduction -

This chapter describes the analysis and design phase of this thesis work. The previous
research efforts by other AFIT students have generated many objects. Each of the 6bjects
can be reused, but the reuse process may differ depending on the representation of each of

the objects and on the effort to reuse. This chapter is concerned with derived reuse that is

accomplished via the OO principle of classes/objects and their relationships. As a part of

this, several ways of building Ada software components are discussed. The discussion will
‘range from domain analysis and component identification to the development of effective
reusable software componenté for flight simulator applications. The concerns are the chaf-
acteristics of good reusable software components, such as maintainability, understandability,

ease of use, the importance of quality, and generality.

When building a reusable software component, a systematic approach to identify and
to develop reusable components is needed. This usually comes from domain analysis that
leads to the identification of common obje:ts, operations, and structures. Reusable code

components are designed with the following goals in mind:

¢ Reusability: The design should provide for reusing existing code and a framework that

enables the reuse of new code,

e Extensibility: The design should be constructed so that future additions to the design

can be made with a minimum effort.

e Utility: Design of each component should include useful, easy, and flexible object

functions.

3.2 Analysis

While the focus of this thesis is the design and implementation of a reusable component

to evaluate the features of Ada, it is not possible to simply start with a design. The analysis
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should be done first in order to have a starting point for the design. Analysis is concerned
with devising a precise, concise, understandable, and correct model of the real world. An

analysis model is built to abstract essential aspects of the application domain without regard

for eventual implementation. This model contains objects found in the application, including -

a description of the properties of the objects and their behavior.

* As a part of the analysis, the understanding of the system and object notations used
in this thesis was required. This came from Captain Simpson’s system and object notations

(37) The analysis started with domain analysis of the flight simulator.

A domain analysis is an investigation of a specific domain or application area to iden-
tify a common “generic paradigin” and to identify candidate reusable components for the
domain (14:13). A domain analysis is similar to a system analysis, but is much broader in
scope. The domain analysis results in development of a domain model that provides the
framework for development of reusable software components. In other words, it leads to the
identification of common objects, operations, and structures. One of the most important
things in performing a commonality study is a level of commonality, which is captured by

means of abstraction/decomposition, generalization/specialization and parameterization.

There are several techniques that can be used in performing a commonality study. One
of them is an OOA software decomposition technique based on the classes of objects, which
are viewed as a “high-level abstraction”, as in an ADT. An ADT is a class of objects defined
by a set of operations available on them and the abstract properties of these operations.
An OOA of the domain and each member of the domain representation set can lead to
the identification of commonality across applications, and can be used as a good starting
point for the development of a domain modef\ and associated reusable software components.
A class in an object model, as Booch points\out, is a set of objects that have a common
structure and common behavior. The object|class is a candidate reusable component for
the domain. Therefore an OOA of the domain can serve as domain analysis for building a

reusable software component.
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The main purpose of the analysis phase was to identify potential reusable software

components. The identification of reusable components was based mainly on the flight

simulator object model shown in Appendix A (37). Several base classes were identified
as reusable components, then the low level inputs (Joystick and RS232 Port classes) were
selected as reusable components for use in this thesis. The Joystick and RS232 port are not
typical graphics components, but they work much like'graphics components. The system
interface to control the I/0 déviées is essentially required to use system calls written in
C much like Graphics Library interfaces. Hence, software components controlling the low
level devices such as I/O and Graphics devices are good candidates for reusable software

components, and they illustrate the same principles as we would find in building reusable

graphics components.

JOYSTICK] PORT
: » ’ DISPORT
I -

jaY
ROAVSE IS T5'REEEY SOCKET
gbf A 5
—n) N 170
MANAGED I PORT PORT
RS232 POR] MANAGER READER
------ 3

Figure 3.1. Design of Joystick and RS232 Port Classes

S Thenext step was to a.halyz'e the joystick class and the RS232 port classes and their
, rela.ti‘onshjl.) among their class members in more detail. The deta.il'ed.‘ahalysis was based

mainly upon the sources available. The main available sources of information for analysis
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were the user’s manual for the joystick, previdusly written C++ routines, and the object-
oriented model. The object-oriented model of the Joystick and RS232 port objects are shown
in the figure 3.1. They served as a basic domain model for building reusable components in

this thesis.

The joystick communicates with the computer through an RS232 port. The RS232
port was accessed through Unix system calls. The Joystick used both the Managed RS232
Port and the Distributed RS232 Port. The Distributed RS232 Port provides a transparent
interface with another machine through the Unix socket. Since both the Unmanaged RS232
Port and the Distributed RS232 Port have common methods, an abstract class named “Port”
was created. The “Disport” object is the “main” program, which makes and runs the Port
Reader. The Port Manager object is responsible for the extra checking of port usage on

diiferent machines.

The next step was to identify existing code that could be reused in the design and
implementation in order to reduce the overall effort required. The reused code came from
the Unix system library and the flight simulator class library. For example, the Unix system
library is required to control a hardware device. But reusable code was written in C++
or C and was not visible directly from Ada. For a successful Ada bindiag to C++ and
C, the binding feasibility was analyzed. There is a series of procedures that is required to
successfully develop a binding. For a complete Ada binding to a library and existing code
using the same subprogram and variable names provided in the original C++ or C version,

the following steps are necessary.

e Create parallel data types.
o Interface to external symbols (routine and data).
e Link to external libraries.

Whenever access to routines or variables declared in an alternative language is required, any
Ada variable used in conjunction with the subroutine or variable is compatible with the C++

or C data representation. Once these parallel types have been established, the next step is
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‘to gain access to external routines and data provided in the interface target language. This

is accomplished in a two stage procedure: first, equivalent Ada squrogram specifications
are written, and second, the linkage to the external routine and data is declared. The first
step can be a simple mapping of external routine and data names and parameters into an
Ada subprogram speciﬁcation. The second step is accomplished through use of the pragme

INTERFACE and pragma INTERFACE_NAME. Linking the symbols built in Ada with the

external C+4 or C symbols is done by the Ada linker. The detailed binding process is

presented in chapter 2.

For each cléss object, a detailed analysis was per_formed. Basically, the Unman-
aged_RS232 Port class was a wrapper class to call Unix system calls to control an RS232 poft
for the input on one machine. Captain Simpson’s code was instrumental in its detailed Unix
systemn calls to control the RS232 port (37). Using Captain Simpson’s code and a variety of
Unix system calls (36), all information necessary for analyzing a wrapper class was obtained.
The primary motivation for making a wrapper class is to make library or operating system
routines easier to use. Thus, only the file descriptor was needed once the RS232 Port was

opened. Most of the complexity occurred in the initialization of the port. Given the Unman-

aged_RS232 Port, this work shifted into how to reuse existing C code within Ada. Most of '

the Unix system calls in the Unmanaged-RS232 Port class were used to control I/O devices,

and some had complicated data structures. Thus, successful development of a binding (in-

terfacing) to Unix system calls was required. Fortunately, VADS provided the ‘graphiclib’

and ‘publiclib’ libraries which provide ways to interface with Unix system calls (41). These
libraries provided parallel data structures between Ada and C corresponding to most of the
systein calls for I/O and graphic devices. For example, the JOCTL system call was needed
to represent the way the port should function, such as ena.bie receiver, enable signals, and
enable user specified baud rate. VADS provided exactly the same data representation with

it.

Another big concern with Captain Simpson’s object model was how data transfer

occurred between two computers. However, I didn’t analyze it in much detail since my
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intention was to reuse it. By reuse of these C++ routines, features of Ada and the C++ |

class library interface can be evaluated.

The analysis of the Joystick class proceeded in a manner similar to the analysis of the
RG5232 port class. One major concern with the Joystick class was the degree of concurrency.
In certain modes, the joystick would operate independently of the computer. In addition,
the Unix operating system was capable of multiple processes running at the same timein a
time sharing mode. The Unix operating system input routines associated with the joysti.ck
would be part of a separate process from the one ruuning the flight simulator. Identifying
concurrency in the analysis phase :ade the issue of concurrency easier to handle in the

implementation phase because task types in Ada were known.

The methods and attributes needed for each class within their class hierarchy were
analyzed. The main concern with analyzing methods and attributes was with their reuse.
It seemed that all methods providing for the classes were methods that the object could
provide using only the state information contained within it. The rest of the classes in figure

3.1 were analyzed in a similar manner.

3.8 Design

The design of a software system is one of the most important parts of a software
development effort. The analysis was done by examining the relationships between the
object-oriented model and domain model, by analyzing Ada bindings tc C++ and C; and by
analyzing the object-oriented model. The design decisions were then made and details added
to the model in order to describe and optimize the implementation. The overall idea was to
produce a reusable software component that users could use in other applications without
modification or with providing parameters. The main goal in designing and implementing
each romponent was the ease of use and reusability (extensibility and mainiainability were

derived from designing for reusability).

Making the component easy to use for the designer who plans to use the interface of the

component is centered totally upon the methods that are offered by the'component. When

3-6




used in this manner, the component can be viewed as a “black box”. Information hiding and

-encapsulation derived from abstraction of the component interface is the overriding principle

in making components easy to use.

The main idea to build reusable software component was to look at the software com-

ponent from the perspective of a potential user of a class. All components were constructed

from the standpoint that they may be used in other, possibly unrelated applications. One of |

the most effective ways of accomplishing this is to look at the component in isolation from

the rest of the system being built.

The design of such reusable software components presents the design with a set of

charactcristics of reusable components. There are several important characteristics of com-

ponents intended for reuse (18:84). One of the characteristics of reusable components is a

| component’s interface. The syntactic interfaces specify compile-time invariants that deter-

mine how components fit together, and semantic interfaces specify execution-time invariants
that determine what the component computes. Another important characteristic of reusable
components is abétraction, which was mentioned in the previous chapter as the most pow-
erful tool available to the human. The idea of function abstractibn is that a function F may
be specified entirely by an input - output relationship. The user of a component based on
function abstraction need not know how fhe function is implemented. Another important
abstraction technique is data abstraction, in which data as well as function implementation
may be hidden from the user. With this abstraction technique and component’s interface
approach, \the hidden data characterizes the current state, which may be transformed by
means of the set of internal (hidden) operations. However, it is much more difficult to define

how one should go about designing components to exhibit these properties.

Components that incorporate these techniques are usually referred to as objects and
are said to b object-orientéd. The object i a reusable software component having a hidden
state and a set of operations or capabilities for transforming the state. OOD has been widely

accepted as being a method which is likely to lead to substantially increased software reuse,

with abstract objects being perceived as the natural unit of reuse. The class to which such
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objects belong resemble ADTs in many ways. ADT is a class of objects defined by a set of

operations available on them and the abstract properties of these operations.

OOD promotes reuse by means of interface abstraction - use of the interface does not
réquire knowledgé of the implementation, and inheritance mechenisms - inheritance is a
mechanism for deriving one abstraction from another, specifying only the difference between
the new (derived) and old (parent). This inheritance mechanism establishes a relationship
between these abstractions, usually a dependency of the derived class on the parent with the
benefit of eliminating the need to recode each new abstraction form scratch. This increases

software productivity through abstraction reuse.

The design of the reusable Joystick and RS232 Port components was not considered a
main effort since the OOD model was reused. This model focused on rcasability with C++.
For example, “Unmanaged _RS232_Port” and “Distributed_RS232_Port” were inherited frem
the abstract class “Port”. Given this relationship, the “Joystick” instantiated any type of
“Port” and used polymorphic methods to use any type of Port because this polymorphism

was provided by C++.

However, redesign was required for adapting to the Ada culture. The first option was to
make each Port a component of the Joystick since Ada does ne* suppcrtt run-time polymor-
phism. In addition, two more modificaticns were performed. The “Managed.RS232_Port”
was not inherited from “Unmanaged .RS232_Port” because it acts just the same as the “Un-
" managed RS232_Port”. The “Ada_wrapper” for wrapping C++ routines was added to sur-
round the C++ class members and allow them to‘ be gradually replaced later. The modified
‘Joystick and RS232 Port classes OOD model is depicted in figure 3.2.

The second option was to make a pointer to a “Port” class object a component of the
“Joystick” class. A pointer to a “Port” class object is now a component of the “Joystick”.
This relationship makes “Joystick” instantiate ary type of “Port” and use polymorphic
methods to use any type of Port. This option was taken because it provides a higher abstract

view of port objects, and also, Ada 9X provides run-time polymorphism. The design of this
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Figure 3.2. Option 1: Design of Joystick and RS232 Port Classes

modification appears in figure 3.3. The detailed design of the Joystick and RS232 port are
shown in the Appendix A. ‘

Since one of the main purposes of this thesis was to access existing C++/C routines,

the design of the joyst.i‘ck and RS232 Port components were conceptually separated by two
subcomponents, one to control an RS232 port for the input on one machine, the other to
control an RS232 port for getting data from one machine to the other. The former was
intended to have routines written in Ada, and the latter was intended to have routines
written in C++. By separating components, this design was able to evaluate the features of

Ada interfacing with a C++ classes library through the “Ada_Wrapper” class.

3.3.1 Alternative Methods for Design of a Reusable Component.  Several methods
for building a well-engineered reusable component were considered. Each alternative achieves
the goal of building reusable components by having some effect on OO mechanisms with

Ada language features, such as generic units with default formal parameters (both objecfs
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Figure 3.3. Option 2: Design of Joystick and R5232 Port Ciasses

and subprograms), strong data typing, derived types and subprograms, and subprogram
overloading. These alternatives address not only to a limited extent all the fundamental
features of the object-oriented paradigm in Ada, but also the conflicting goals that arise in

the design of reusable software.

3.3.2 Abstract State Machine (ASM) Approach. The most direct representation
of an object is a state encapsulating package (termed abstract state machine approach)
exporting a set of operations that can be used to access and update the object state. ASM
is a kind of “black-box” approach. The user is provided with a high-level interface to the
components. There is no direct access to the data structures themselves. All access is
through the operations provided in the interface. Using generic packages, this épproach can
be extended to emulate a class. The Unmanaged .RS232 port object, for example, can be

represented explictly in Ada as an ASM package of form:

with port;
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generic '
package Unmanaged RS232_Port is

function Close_Port (OB : in object) retﬁrn boolean;
procedure Flush_Queue (OB : in object) ;

package body Unmanaged-RS232_Port is
type object is record . v ,
port_number : port.port.numbers; - port number of device (minus 1)

tty_type : tty.termio; — port settings » '
port_speed : unsigned_types.unsigned short.integer; - port speed setting

.....

end record;

A generic state-encapsulating package with this interface defines an object template

from which multiple structurally identical instances can be genei‘ated. However, generic

packages are static entities that can only be instantiated at compile time, and thus do not
support the concept of dynamically instantiatable objects identified by references, let alone

support the accompanying mechanisms of inheritancé, polymofphism and dynamic binding.

3.3.3 Task Approach.  The second method is to represent objects as tasks. This
method can support dynamically instantiatable classes and the notion of conéurrency. It

‘cza also be used to realize a form of dynamic binding. In this approach the class Joystick

__can be rep_resénted by a task type of the form: . .

task type Joystick is ‘

entry get_coordinates(x_value : in out integer; : .
y-value : in out integer; '
butl : in out integer;
but2 : in out integer;
but3 : in out integer;
flag : in out boolean);

entry Set_Joystick Mode(new_mode : in joystick-mode);
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One of the main advantages of this approach is that it supports the notion of concur-
rency and enables 6bjects to be active. It can also be used to realize a form of dynamic
binding because Ada permits a task to define several different ‘accept’statements (method
bodies) for each entry (method) exported in the interface. By parameterizing the task with
a flag indicating which of the ‘accept’ statements is to be 'executed, it is possible for dif-_
ferent instances of a single task type to provide alternative implementations for the entry
concerned. However, the problem with this method is that classes emulated by task types
in Ada can not provide support for inheritance. Another problem is that they can not be

library units {5:184-185).

3.3.4 ADT Approach. In addition to the above two approaches, the nofion of ADT
can be used for representing objects and classes. In this method, an object is aeﬁned by a
package exporting an ADT. The data structure is declared in the private section 1n a package
specification, thus the user is “stuck” with the data structure provided by the designer. To
change it, he must change both the specification where the data structure is ?deﬁned and
the body. This approach differs from the ASM approach in that the interfacé consists of
both the predefined set of operations and the data structure itself, but the state of the data
is not captured (14:45). The package exporting the type and associated metho;ds does not
itself represent an object but rather variables of the exported data type, and the package
defining the ADT cdrresponds more to a class, therefore, than to an object. Tfhe reference
semantics and the dynamically instantiated objects are provided by making the exported
type an access type rather than a static type. The main advantage of this method is that
it provides limited support for two important mechanisms associated with classes/objects,
inheritance and polymorphism through the variant and class-wide programming. This can

provide a representation of inheritance with respect to the operations associated with a class.

The following example shows how the use of this can implement inheritance.

Package Port is
Type Port_Type is (Unmanaged_RS232_Port_Type, Distributed_RS232_Port_Type)
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~declare the variant record.
Type Port_Record is private;
type Port is access Port_Record;
subtype Unmanaged-RS232_Port is Port;
subtype Distributed _.RS232_Port is Port;
function Unmanaged_Port_Open(Self : Unmanaged _RS232_Port) return boolea.n,
function Distributed_Port_Open(Self : Distributed _R$232_Port) return boolean
function Port_Open(Self : Port_Type) return boolean; :
private
Type Port_Record (Class : Port_Type) is
record
Port_Open : Boolean;
case Class is
when Unmanaged_RS232_Port_Type =
Port_FD : integer; '
Port_Speed : integer;
when Distributed . RS232_ Port_Type =
Data_Socket : Socket;
Cmd_Socket : Socket;

end case;
end record;
end Port;

However, the main shortcoming of the derived type and subtype mechanisms is that
they do not permlt the set of state varlables assocnated with an abstractlon to be extended
Building a new system from pre—ex1st1ng components is not possible w1th<;ut modlﬁca.tlon
or adaptation to the specific requirements of the new system to fully facilitate reuse. For
example, the record type with variant part is used to model Port_Record. The actual struc-
ture and processing depends on their Port_Type, which is used as a discriminant. How-
ever there are several problems with this approach. For example, wherever code exists to
handle Port_Record, case statements must be used to determine the actual subtype of the

Port_Record prior to its processing. For example, the following program shows how the

actual subtype is determined.
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function Port_Open (Self : Port_Type) return boolean is
begin
case self.Class is
when Unmanaged_RS232_Port_Type =
return Unmanaged_Port_Open(Self);
when Distributed _RS232_Port_Type =
return Distributed_Port_Open(Self);
when others = return false;
end case;
end

-----

-----

This variant approach is fragile in maintenance. For example, if a programmer wants to
modify the system to support a new Port_Type (e.g., X.21_type), then typé Port_Type must
" be modified, as must type Port_Record, as well as any subprograms that handle Port_Type or

Port_Record, even if these operations do not require any additional logic for the X.21_type.

3.8.5 Generic Approach.  Another method for representing classes and objects is to
use Ada generic units to provide components which are tailorable to user-defined types. It
- provides flexibility while simplifying use. Types and operations on the types are defined, and
the types can then be used to instantiate the generics and the operations will get pulled along.
The major advantage of this approach is that it incorporates strong typing and is flexible.
However, the user would need to supply a large number of generic parameters. This burden
can be alleviated by the judicious use of default parameters. Generics can be exploited in
the development of reusable components. Low-level components can be designed as generic
packages or subprograms. A set of higher-level parts components can then be built from
multiple levels of these generic units. The user provides actual parameters to instantiate
the generic components and tailor them to his application. This approach would be used
with the ASM or ADT approach. Effective use of generic units for the creation of reusable
components requires reconciliation between the complexity of the generic specification and

the ease of use of the component.
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8.8.6  Using Ada 9X. Ada 9X allows ADTs to have user-defined initialization and
finalization and generalizes user-defined equality/inequality for any tvpe. Ada 9X also adds —’ L
class-wide operations as well as run-time polymorphism within a class of related typés as an -

option for programmers, while retaining Ada’s generally static type model.

Ada 9X provides support for the paradigm of’ objéct-oriented programming (OOPF).
through powerful mechanisms for variant and class-wide programming and child library
units. For example, the limitations of the Ada 83 ADT approach can be addressed with Ada
9X. With Ada 9X, the programmer can use tagged type extension and subprogram dispa.tch. B
to simplify the system, handling each variant as a derived type extension, eliminating variant
records and case statements. Processing for each kind of Port_Record is Iocalizéd to a type,
and dispatch will insure that the proper operation is called for in each instance. For example, ' ,

the above Ada 83 code will be translated into Ada 9X code as follows:

Package Port is ,
type Port is tagged private;
function Port_Open(Self : Port) return boolean;

|

. J,.‘.... .

type Unmanaged RS232_Port is new Port with private;
function Port_Open(Self : Unmanaged_RS232_Port) return boolean;
type Distributed_RS232_Port is new Port with private;
function Port_Open(Self : Distributed_RS232_Port) return boolean;

ooooooo

private , ' ' Co

type Port is tagged; ' . ( L

record o : : A
Port_Open : Boolean; : : '/ \

end record; L

end Port; \
Now the variant record type has been replaced with a Port and two types derived from / b
it. Type Unmanaged_RS232_Port extends the Port and has its own Port_Open function.
Each derived type inherited the primitive operation of its parent type Port. Each derived
type has its own Port_Open procedure, and overrides function Port_Open of the parent
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function Port_Open. .In addition, the new type can contain additional componenfs, and
one can define new operations. Instead of the single function Port_Open embodying a case
statement as in the Ada 83 solution, the Ada 9X solution distributes the logic for handling
Port_Record to each specific Port_Type, without redundancy.

function Port_Open(Self : Port) return boolean is
begin
end '
function Port_Open(Self : Unmanaged _RS232_Port) return boolean;
begin
Port_Open(Port(self));

Each body for Port_Open encloses just the code relevant to the type, and delegates
additional processing to an ancestor via an explicit type conversion. In Ada 9X, view conver-
sions to a tagged class-wide type preserve the tag of the object to permit repeated dispatch

within the class determined by the target type.

If a new kind of Port_Type for special purpose must be added, it may be done without
disturbance or recompilation of the existing system code as a separate package. The following

example program shows how a new variant can be added.

with Port;
package Port.New_Port is

type X.21_port is new port.port with private;
function Port_Open(Self : X.21_Port) return boolean;

Liowever, objects of Port’class are of unknown, varying size, due to the possibility of
extensions. For the Port, the set of values of the class-wide type Port’class is the union of
the set of values of Port and all of its derivatives. For this reason, Ada 9X treats them

as unconstrained, analogous to unconstrained array types (e.g., string) in Ada 83 (1). For
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example, when a class-wide type, Port’class, appears as the designated type in an access
type declaration, the resulting type may designate any object within the class rooted at
Port. Using such class-wide access types will be a common idiom of OOP in Ada 9X. For

example, the following code will be inserted in package Port:

type Port_ptr is access Port’class;

function Port_Open(class_Ptr : Port_Ptr) return boolean;

Port_ptr is an access type with designated type Port’Class. This allow Port_ptr values
to designate objects of type Port, or any dcrigrative of Port. The operation. Open_Port is
a class-wide operation in that it takes parameters of type Port.ptr, which designates the
class-wide type Port’Class. When a primitive Lperation of a tagged type is called with an

!
operand of the class-wide type, the operation to be executed is selected at run-time based

on the type tag of the operand. This run-tim!e selection is called a dispatching operation.
Dispatching provides Ada programmers with a lna,tural unit form of run-time polymorphism
within classes of related (derived) types. This variety of polymorphism is known as “inclusion
polymorphism”.

Class-wide programming and type extension, in conjunction with generic units, pro-
vides many useful facilities. Generic units may be parameterized by user-defined classes,
allowing abstractions to be built around such classes. Consider the following example pro-
grams in conjunction with Port. The generic package Joystick has the following form:
with Port;

generic
type generic_Port(<>) is new port.port;

with functioh Port.Open(self : generic_Port) return boolean;

-----

package Joystick is
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In this example, type generic_Port will be matched by any type derived .rom port.port.
This generic package could be instantiated with a specific derivative of port.port and other
actual parameters. The notation (<>) specifies that the actual generic_Port type may have
any ﬂumbe_r of discriminants or be a class-wide type. A generic unit may extend a tagged
type, adding components and operations. The extended types declared within such generic
units inherit all the properties of the original type and process all the new properties defined
by the generic units. Such generic units act as “mixin” classes and provide one aspect of

multiple inheritance (1).

Now all OO programming mechanisms were provided. The only debate for Ada 9X is
multiple inheritance. Ada 9X supports multiple-inheritance via multiple with/use clauses,
via private extensions and record composition, via the use of generics apd formal packages,
and via access discriminants (39). However, in Ada 9X, the linguistic multiple inheritance
mechanism is not provided because of the potential for distributed overhead caused by mul-
tiple inheritance. But this is a minor point: multiple inheritance is a programming style, not
a universal tool, and object-oriented practice of the past ten years indicates that the critical
benefit of OOF, namely code reuse, is not substanfially enhanced by multiple inheritance

(33).

3.3.7 Abstract Data Type with Common Class. Using these different methods, it

was possible to achieve something of the effect of all the principal object-oriented mech-
“anisms. None of these methods except Ada 9X is acceptable for implementing a .general
object-oriented language like C++ because they each support only a certain subset of the
required properties. For example, if a class is modelled by a task, so as to take advantage of
the dynamic binding and concurrency, it is not possible to use inheritance. If the ADT ap-
proach with derived types and subtypes is used, it does not permit the set of state variables
associated with an abstraction to be extended. Ada 9X is the best solution to implementing

a set of reusable compohents, since it provides support for the paradigm of object-oriented
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programming (OOP) through powerful mechanisms for variant and class-wide programfning "

and child library units. However Ada 9X was not available at the time of this work.

Thus, this thesis design was implemented with Ada 83. The next solution was the ADT

approach. The final alternative was the ADT approach with a common class method. This

method eliminates limitations such as type incompatibilit; with the simple ADT approach.
ADT with the common class method was the approach developed and used on the DRA-
GOON project (5). The xﬁain difference between ADT with common class and the simple
ADT approach is that the state of object is not represented by a single record but By a ]iniced
list of records. Each node in the list stores the state variables added by its ancestors. Thus

the state of the objects in this thesis would be represented by a list with the ‘node’ storing

their attributes specific to their objects added to a ‘node’ storing their attributes belonging-

to their classes ob jects. Conceptually, all user-deﬁned application classes except classes for
getting data from one machine to the other are descendants of common_obfect and may be
assigned to instance variables of this class. Therefore, logically, the first node of every such
state list corresponds to an instance of the class common.object. Flgure 3.4 shows the full

version the Joystick and RS232 port class hierarchy.

In ADT with a common_object class approach, all objects in the component are repre-

sented by state lists whose first node is a record of type Common._Object.State, referenced by

an access variable of type Common_Object.Object. Instances of class C’ommon-Object.Object

are a special case in that their state is represented by a ‘uninode’ list containing a single

record of this type. The Ada record type used to generate this special first node in the state

list is defined following a package part of the predefined environment of every Ada library

used for implemanting components in this thesis.

package common_object is
type state;
type object is access state;
type state is record
offspring_no : natural := 0;
self : object;
multiple : object;
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Figure 3.4. Full Version of the Joystick and R5232 Port Class Hierarchy

heir : object;
end record;
function CREATE (offspring_no : in natural := 0)
return object;
end common.object;

package body common_object is :
function CREATE (offspring_no : in natural := 0)

return object is

OB : object;

begin
OB := new state;
OB.offspring-no := offspring.no;
OB.self := OB;
OB.multiple := null;
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OB.heir := null;
return OB;
end; ‘
end common_object;

The state lists corresponding to descendants of Common._Object.Object are composed

of an Common._Object.State record followed by records holding the state variable introduced
by each of the classes in the inheritance chain. This is the basic strategy for overcoming the
incompatibility of the polymorphism features and Ada’s strong typing mechanism. Since the
first node of every state list is of the type Common_Object.State, all objects in the component

are referenced by access values of the same Ada type - Common_Object. Object.

The OFFSPRING_NO and MULTIPLE fields of the Common_Object.State are used to
handle multiple offspring and multiple inheritance situatidns, respectively. The field SELF,
on the other hand, simply pointsv back to the record so that objects may access its own state.
The last field HEIR is the one that contains the ‘links’ or rel-:rences to other nodes to build
a linked list for non-trivial objecfs. In the case of instances of the class Com.mon_rObject, the
HEIR field is left containing the value ‘null’since the ‘state’ of each objects is represented by
an instance of Common_Cbject.State alone. However, for objects of descendent classes, this
field is used to point to the next node in the list. The HEIR field of the Common_Object.State
is defined to be any type OBJECT for convehience, but in fact any access type would have
Wsufﬁced because it is impossible to predict at the time of its definition what the type of the
next node will be. This information is only available when an heir of Commolf_Object is
transformed. This is the point at which the Ada typing rules need to be broken ‘s\o that the
nodes representing newly defined heir classes can be ‘linked’ on to the list corresponding to
objects of the parent class. To make this HEIR field point to a record with a different type
to Common.Object.Object, Ada’s predefined generic function UNCHECKED.CONVERSION

must be used to change its apparent type.

The only problem with this approach is that it introduces unnecessary Common_Object

class and attributes for making each class linked. For example, all classes are inherited from
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Common.Object class, and have two additional attribui s - Offspring_no and Heir which are

not essential to them.
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IV. Detailed Design and Implementation , /

4.1 Introduction

One of the main goals of this thesis was that C++ should be readiily translatable
into Ada and be able to interface with Ada for building reusable software components. This

chapter describes how the object model is translated into Ada in a fairly succinct and natural

style. o
4.2 Detailed Design and Implementation of the Reusable Port and Unmanaged-RS232_Port
Component | ;
The abstract class PORT was translated into a package with the following specification
and body. The strategy for representing PORT objects in Ada was based on the approach ' N

of an ADT with a Common_Object class. The PORT objects are generated by the member o
function CREATE. The ."ORT class package provides the reference semantics and the as-
sociated facility for dynamically generating objects by making the exported type an access

type rather than a static type: : .;

with common_object;
with unchecked_conversion; : . ‘ -
package Port is '
" type variable;
type state is access variable;
type variable is record ‘ ' ' 1o
' port_open : boolean; —flags if port is open
o offspring_no : natural := 0; '
HEIR : common_.object.object;
end record;
function common_view_of is new P
unchecked_conversion (source = port.state, o
target = common_object.object);
function port_view_of is new
unchecked_conversion (source = common_object.object, _
. target = port.state); ‘ 5
function part_of (OB : in common_object.object) return state; v ‘
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function create (offspring_no : in natural := 0) return common_object.object;
function Get_Port_Open (OB : in common_object.object) return boolean;
function Open_Port (OB : in common_object.object) return boolean;
procedure Read_From_Port(

OB : in common_object.object;

Buffer : in out string;

num_chars_to_read : in integer;

count : out integer);

.. ~other methods
exception : UNDER_FLOW,;
end port;

Package body Port is

. other variables and functions

function create (offspring_no : in natural := 0)
return common_object.object is
com_obj : common_object.object;
port_obj : state;

begin
port_obj := new variable;
port_obj.offspring_no := offspring_no;
port_obj.HEIR := null;
com_obj := common_object.create(1);
com_obj.HEIR := common_view_of(port_-obj);
return com._obj;

end;

As illustrated in Figure 4.1 and program examples, the state of Port object is rep-
resented by a linked list with two nodes, the first node of type Common_Object.State and
the second of type Port.variable, storing port attributes. The job of linking the two nodes
together transparent'v is performed by the CREATE function using Ada’s predefined func-
tion UNCHECKED_.CONVERSION. To enable the HEIR field of the first node to point to a
record of type port.variables, the create function makes references of type port.state appear to
be of the expected type Common_Object. Object. For example, the port_view_offunction in the
example program is an instantiation of the generic function UNCHECKED_CONVERSION
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converting access values of type port.state to the type Common_Object. Therefore, all objects
in the components are of type Common_Object.State referenced by an access variable of type
Common_Object.Object. Not only does this mechanism solve the problem of polymorphism,
but it also means that there are no typing obstacles to the ihcremental introduction of ﬁew

subclasses, since instances of these are also represented by state lists referenced by the ac-

~ cessed variable of type Common.Object.Object. For example, if the HEIR field of the first

node is ‘null’, the list represents an instance of class Common_Object; if not, then it must

* correspond to a descendant of Common_Object, and therefore can be supplied as a parameter

to a method of a deséendant class. Ih order for fhe ‘methods’ of the class to manipulate the
state variable stored in the corresponding state node, the Paft_Of function was introduced.
It performs the inverse ‘“UNCHECKED.CONVERSION’ to the CREATE function. Given
a reference of type Common_Object. Object, it returns a reference of the access type defined
in its package. The breaking of the type rules is therefore performed t'fansparently in a

disciplined manner through the two functions CREATE and PART_OF within each package.

Variabld——>| Offspring_No Port_Open
Self | Offspring_No |
Multiple Heir
Heir

Figure 4.1. List Structure Holding State of Port Objects

4.2.1 Inheritance.  As mentioned previously, the inheritance mechanism supports
the reuse of an existing ADT as tle basis for the definition of the new ADT. This mech-
anism does not establish any connection between the old one and new one. In this thesis,
this inheritance is accorﬁplished through the linked list, which has a common object access
type. In a linear inheritance hierarchy, the process of adding nodes onto the list is repeated
for each new addition to the hierarchy. As illustrated in Figure 4.2, the state of a Unman-

aged_RS232_Port object is stored as a linked list of three nodes. The Ada package into which
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Unmanaged_RS232_Port is translated, however, is completely independent of the record types
used to generate the first two nodes in the list. For example, Unmanaged.RS232_Port would

be translated into a package of the form:

with port; with common_object; ......
package Unmanaged RS232_Port is
type variable;
type state is access variable;
type variable is record
port_FD : os_files.file_descriptor; - port file descriptor number
port_type : port.port_comm_type; - terminal, modem or flow control

offspring_no : natural := 0;
HEIR : common_object.object;
end record;
function part_of (OB : in common.object.object) return state;
function create_of (
port_num : in port.port_.numbers;
speed : in port.port_speed_spec;
mode : in port.port_input_mode;
port_c_type : in port.port-comm_type;
offspring-no : in natural := 0)
return common_object.object;

... other functions

function Close_Port (OB : in common.object.object) return boolean;
procedure Flush_Queue (OB : in common_object.object) ;

This structure is not affected in any way by that of the package Port corresponding
to its parent class. The only place in which reference is made to this package is in the
implementation of the Create and Part_.Of. The Create and Part.Of functions would be

translated into a function of form:
package body Unmanaged RS232_Port is
function part_of (OB : in common.object.object) return state is

begin
return Unmanaged-RS232_Port_view_of(port.part_of(OB).HEIR);
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~ end;
. function create_of ( _
port_num : in port.port.numbers;

------

- offspring-no : in natural := 0) return common_object.object;
com_object : common_object.object;
rs232port : Unmanaged RS232_Port.state;
begin ‘ : _ ‘
rs232port := new Unmanaged .RS232_Port.variable;
rs232port.offspring_no := offspring_no;
rs232port.HEIR := null;

rs232port.port_mode := mode;
rs232port.port._type := port_c_type;
com_object := port.create(1);
port.part-of(com_object). HEIR := common_view_of(rs232port);
return com.object;
end Create_of;

The key benefit of this mechanism is in the structure of these two functions. Redefining

an abstraction from a pre-existing class is not at all influenced by the implementation of the

parent class. .

4.2.2 Dynamic Binding.  To illustrate the problems involved in implementing this

mechanism, consider the class Unmanaged_RS232_Port. The most important feature of this

class, as far as dynamic binding is c.onceﬂrnerd, is that it re-implements some of the methods

inherited from abstract class PORT. Consequently, when one of the redefined methods is
invoked through an instance variable of class PORT, the particular version of the method
which is executed depends on the dynamic type of the instance variable, that is, the type
of the object to which it is referring at the time of the call. The problem, therefore, is to
decide at run-time which of the Ada subprograms implementing the alternative versions of
the method should be executed. Moreover, the incremental development facilities of the OO
approach mean that the programmer may define further subclasses at any later stage; the

range of different versions that may be invoked does not remain fixed. There must be some
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Variablgq—s| Offspring_No Port_Open
Self Offspring_No
Multiple Heir
Heir
Port_Fd
Port_Type

Other Attributes

Offspring_No
Heir
. Figure 4.2. List Structure Holding State of Unmanaged RS232_Port Objects

Ada code in the system that knows about all the different current versions of a method in
the system and is able to select the appropriate version at run-time. If this was embedded
in the body of the Ada packages into which classes are translated, however, the code would
have to be reproduced and recompiled each time a new version of a method was defined in a
subclass. The incremental development principle of the OO approach would thus be largely

undermined.

Ada’s features for deﬁning\t‘the bodies of methods in physically separate subunits, how-
ever, provides an elegant mecha‘yl ism for avoiding this problem. It permits the amount of
code that has to be updated to cater to the introduction of new method versions to be limited
to a single procedure body. None of the subprograms declared in the package specification
actually implements the corresponiding method directly, however. This job is, in fact, per-
formed by an additional set of methods declared in a package SELF contained in the body

of the main package. The bodies of the visible subprograms declared in the specification of
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the main package are contained in ‘separate’ units and use the subprograms defined in the

inner package SELF to implement the original method.

Package body Port is
package self is

function Open_Port (OB : in common_object.object) return boolean;

procedure Read_From_Port(
OB : in common_object.object;
Buffer : in out string;

" num._chars_to_read : in integer;

count : out integer);

end self;

package body self is
function Open_Port (OB : in common_object.object) return boolean is

begin ‘
if port.part_of(OB) = null then
raise UNDER_FLOW;
else
return false;
end if; -

end;

procedure Read_From_Port(
OB : in common_object.object;
Buffer : in out string;
num_chars_to_read : in integer;
count : out integer);

begin
raise UNDER_FLOW;
end; .
end self;

function Open_Port (OB : in common_object.object)
return boolean is separate;
procedure Read_From_Port(
OB : in common_object.object;
Buffer : in out string;
num _chars_to_read : in integer;
count : out integer) is separate;

. other functions
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end port;

The subprograms declared in the inner package SELF contain the Ada imagev of the
code in the body of the corresponding methods. For example, the Read_From_Port method
declared in the inner package SELF contains the Ada image of the code in the body of the
PORT.

Since PORT is an HEIR only of COMMON_OBJECT and does not inherit any user-
defined method, when it is first implemented into Ada, there is only one version of each
of its methods known to the system. Until the subclass of PORT is added to the library,
therefore, the subprograms declared in the specification of the corresponding Ada package
are essentially redundant. The only action they perform is to call the corresponding method
contained in SELF. The body of the exported Open_Port subprogram, for example, has a
separate body of the form:

separate (Port) _
function Open_Port (OB : in common_object.object) return boolean is
begin ‘
return self.Open_Port(OB);
end;

At this stage, this subprogram makes no useful contribution to the vimplementation
of the method. This occurs when the programmer defines new versions of the method
in subclasses. The subclass of PORT that does this is the class Unmanaged_RSQ;?.?_Port
which redefines the Open_Port. When Unmanaged_.RS232_Port is implemented into Ada,

the separate body of the subprogram PORT.Open_Port is replaced by the following:

with Unmanaged RS232_Port;
separate (Port)
function Open_Port (OB : in common_object.object) return boolean is
begin
if port.part_of(OB) = null then
return self.Open_Port(OB);
else
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return Unmanaged RS232_Port. Open_Port(OB)
end;

When invoked, this function analyzes the form of the state list OB to see whgt.her
the state list represents an instance oo PORT or its subclass Unmanaged_RSQ.?Q_Port. If
it represents the latter, it invokes the Unmanaged-RS232.Port version, otherwise it invokes
the method in the package SELF. Essenvially, therefore, this function forms a kind of ‘shell’
around the true method implementations in order to select., at run-time, the appropriate one

for execution.

The great advantage of this approach is'that all the modification and recompilation
needed to cater to the new version is limited to the ‘separate’ subpxograms of the methods
concemed This advantage come from the separatlon of the method selection subprogram
that is, it is replaced as a subunit of the main package. Not even the body of the package, let
alone the Ada code for clients of the class, needs to be recompiled when methods redefining

subclasses are added to the system.

This technique is fine for distinguishing between the different versions of a method
that may be introduced in a linear inheritance chain, that is, when each class has only one
parent and one child class. However, if a parent has more than one child class, before using a
Part_Of function to convért its type, it is essential to det‘ermine to which of the child classes
the next node in the list é.ctually corresponds. Another field is needed in the nodes of the
state lists to indicate in which of the branches of the inheritance tree the class represented
by the subsequent node lies. The Offspring.no is the purpose of indicating which of the child
classes is the next node in the list. Together, the Heir and Offspring_no fields of state nodes
provide all the information needed by selection shells to determine which version of a method
to execute in response to a call. Suppose, for example, that the Distributed_RS232_Port was
translated into the package, which also redefined the Open.Port. Now the Offspring.no field

would be assigned natural number 1. In order to determine the appropriate implementation -




to ...o‘"‘,f‘-" . !

when (_)pen-Port is invoked through an instance variable of class Distributed-RS232_Port, the
body of the Open_Port function (selection shell) would be replaced by the following form:

with Unmanaged _.RS232_Port;
with Distributed_RS232.Port;
separate (Port) ' ‘ ‘
function Open_Port (OB : in common_.object.object) return boolean is
begin
if port.part_of(OB) = null then
return self.Open_Port(OB);
else
case port.part_of(OB).offspring_no is
when 0 = ' ‘
~ return Unmanaged_RS5232_Port.Open_Port(OB);
when 1 =
return Distributed_RS232_Port.Open_Port(OB);
when others =
raise UNDER_FL.OW;
end;

4.2.3 Clientship. The method of implementing classes in this thesis makes the
translation‘of client code very straightforward. All instance variables, of whatever class
type, are translated into Ada access variables of type CommonObject. Object since the first
node of all state lists is of type CommonObject. Object. The translation of method invocations
empioys the same principle used in the simple ADT approach. That is, the Ada access vari-
able corresponding to the called object is supplied as the first parameter of the subprogram
implementing the method. Thus a method ‘Read_From_Port’ call of Unmanaged-RS232_Port

would be translated into the following subprogram invocations:

Port.Read_From_Port
(part-of(OB).instantiated_RS232,part_ot(OB).JOY _noise_buffer, JOY_DATA SIZE,count);

where instantiated. RS232is a instance variable ..nd JOY_noise_buffer, JOY_DATA_SIZE

- and count are variables for method invocation. The separated Port.Read_From_Port method
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would select the method Unmanaged_RS232_Port class at run-time. Now, instantiated_RS232
is an access variable of type Common.Object. Object. Similarly, the generation of objects by

invocation of CREATE method is simply translated as follows:

instantiated_RS232 : common.object.object;

instantiated_RS232 := ' .

unmanaged_RS232_port.create_of(port_num, port_speed, port_mode, port_type)

4.8 Detailed Design and Implementation of Reusable a Joystick Component

As mentioned in the previous chapter, Joystick class has a degree of concurrency. The

joystick would in certain mcdes operate independently of the computer. The task is the -

unit of concurrency in Ada. The ir-plementation of active objects, with their concurrent
execution threads, must clearly be based on the use of tasks. Because a task is defined
in terms of actions rather than statements or instructions, even the execution of a single
program, such as a_}procedure which prints “Hello” on a terrhinal, can be viewed as a single,
implicit task whose thread of execution runé in parallel with the rest of the system. In
Ada, tasks allow the programmer to decompose a problem into several independent threads
of control. These techniques enable a programmer to model different activities in the real

\world simultaneously. For example, an avionics system has altitude, radar, joystick, and a
i
\graphics display, each of which is continu.lly monitored for valid reading. Additionally, the

graphics display is updated periodically to reflect position, altitude, velocity, and terrain.

ach of these subsystems can be modeled by a task. These tasks are independent activities.

The one problem in using a task to represent the thread of an object is in integrating
it 'with the state list representation of objects used so far. However, this can be overcome
because Ada permits tasks generated from task types to be identified by access variables

that can be included in the appropriate record structure. In addition to the fields storing
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the state variables of the objects, the state node of active objects has an additional field
holding a reference to a task. The active class Joystick can be translated into a package with

a specification of the form:

package Joystick is
type variable;
type state is access variable;
type thread_form;
type thread_ref is access thread_form;
type variable is record
RS_232port : common_object.object;
JOY_mode : character;
JOY _out_mode : character;
JOY _buffer : Buffer_type;
JOY _noise_buffer : buffer_type;

joy-x, joy-y : integer;
joy.l, joy_2, joy_3 : integer;
offspring_no : natural := 0;
HEIR : common_object.object;
thread : thread_ref;
end record;
task type thread_form is ,
entry get_coordinates( OB : in common_object.object;
x-value : in out integer;
y-value : in out integer;
butl : in out integer;
but2 : in out integer;
but3 : in out integer;
flag : in out boolean); -
end thread_form;
function Joystick_view_of is new
unchecked_conversion( source = common_object.object,
_ target = state);
procedure get._coordinates (
OB : in common_object.object;
x-value : in out integer;
y-value : in out integer;
butl : in out integer;
but2 : in out integer;
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but3 : in out integer;
flag : in out boolean);

The procedure get-cbordinates‘éorresponds to the task entry get_coordinates method
used to activate the thread of active classes. Invocation of the get_coordinates method by
a client of an active object is thus translated into the invocation of the get_coordinates

procedure whose body is of the form:

package body joystick is

procedure get_coordinates( OB : in common_object.object;

' x.value : in out integer;

y-value : in out integer;

butl : in out integer;

but2 : in out integer;

but3 : in out integer;

: flag : in out boolean) is

~ begin
joystick.part_of(OB).thread := new thread_form;
joystick.part_of(OB).thread.get_coordinates
(OB,x.value,y_value,but1,but2,but3,flag);

end get.coordinates; ‘ ‘

.....

end joystick;

The first action performed by this procedure is to instantiate the task type thread_form

and assign its access value to the thread field of the state node associated with Joystick. The

procedure then calls the get-coordinates method of the task to give it the reference to the state
list so that the thread may manipulate the variable of the objecfs. The calling of this entry
also serves to unblock the tasks so that it may begin execution of the code corresponding to

the vody of the thread. The thread_form task type therefore has the following body:

package body joystick is
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-----

.....

task body thread_form is
begin
loop :
accept get_coordinates( OB : in common_object.object;
x-value : in out integer;
y-value : in out integer;
but! : in out integer;
but2 : in out integer;
but3 : in out integer;
flag : in out boolean) is
joystick.read_joystick(OB,x_value,y_value,but1,but2,but3, flag);
end get_coordinates;
end loop;
end thread_form;

end joystick;

Once the get_coordinates procedure has generated an instance of task type thread_form
and provided it with a reference to the object’s state list by calling its get_coordinates entry,
the task will execute concurrently with other threads and method invocations, as required.
Moreover, as it is included in the state node of the corresponding objects, it is intimately
associated with the corresponding object state for the duraticn of the program. For example,
consider simplified versions of the flight simulator task units “request_task_type” which may
trigger a long input operation task “get_coordinates”. Each “request_task_type” task calls
tesk “get_coordinates” to determine the current position of a moving object, based on the
X,Y-coordinates of the corresponding joystick. These tasks communicate vy sending each
other not only synchronization information, but data as well. The message passing concept
in Ada is called the rendezvous. After the rendezvous is complete, the two tasks continue

independently.
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44 Detailed Design and Implementation of the Ada F‘Vrappér

The Adawrapper class was iﬁtended as a wrapper class in which C++ class members
of data and function were interfaced with Ada code. Basically, two approaches were taken;
one through the C-linkage (e.g., extern "C” { }, which says that everything within thé
scope of the brace-surrounded block is compiled by‘a C corﬁpiler), and the other through
the typc_-savfe linkage and name encodiﬁg techniques. This section describes the problems
involved in generating names for overloeltded functions in C++ and in linking to Ada and

C+4 programs. It also discusses how problems referred to in this thesis were solved.

The type-safe linkage and name encoding technique (C++-linkage) discussed in this
thesis was based on the 2.0 release‘of C++4. C++, like a Ada, allows overloading of function
names; two functions may have the same name provided their argument types are different,
while C does not provide function name overloading.‘ C has a simple naming convention for

external symbols, which includes global variable and function names. The C compiler just

- prepends an v.nderscore character .’ to external symbols. This simple scheme clearly isn’t

sufficient to cope with overload functions. However, in C++, every function name is encoded
by appending its signature.

" The C++ function name encoding scheme was originally designed primarily to allow

the function and class names to be reliably ex'racted from encoded class member names. .

The basic approach is to append a function’s signature to the function name. According to

the AT&T C++ Language Systé'm"Sclectcd Readings (1), the function name encoding scheme

under C++ version 2.0 is defined as shown in table 4.4.

A global function name is encoded by appending _F fo]lowéd by the signature so that,
for example, Read_Packet(int, char, float) becomes Read.Packct..Ficf Within Ada, this
function should be called through the encoded name ‘Read_Packet_Ficf". Thus when the
port was being set up for “raw” input allowing the port to receive inputs present in the
read queue (regardless of whether the tty device is done sending a full packet or not). the

tty.set_tty state Ada function was used . This function was provided by the VADS *verdixlib’
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Types Encoded | Modifiers Encoded
void v unsigned U
char c const C
short s volatile \
int i signed N]
long ] pointer * P
float f reference &R
double d array [10]A10-
long double | r function () F

ptr to member | S::*MIS

Table 4.1. The C++ Type-safe Linkage and Name Encoding Techniques

library. However, the function didn’t set up the port correctly. Add'itional parameters were
set up and blocked the terminal. For the safety of the terminal_sét, a C++4 function was
written to set the port up for “raw” rather than Ada function. ’i‘hen the C++ function
was called within Ada. To bind with C++, the parallel data typesibetween Ada and C++
were created. Creation of parallel data types was the same as C, thch meant that C and
C++ have basically the same data representations. Then the C++ Ffunction name encoding

|
scheme was used to access that C++ function within Ada.

with system;

1
|
\
Package Unmanaged RS232_Port is ! '
procedure c_port_port( port_FD.num : in system.address,
ttyport : in system.address;
port_speed : ia system.address;
P_mode : in system.address);

pragma INTERFACE (C, c_port.open);
pragma INTERFACENAME (c_port.open, & “c.port_open__FPiPcN2");

Package Body Unmanaged _RS232_Port is
port_FD_num : integer;
ttyport : string(1..11);
P_mode : integer;
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ttyport(1..8) := " /dev/tty”;

ttyport(11) := ascii.nul;

P_mode := port.port_input_mode’pos(part_of(OB).port_mode);
c_port_open(port_FD_num’address,ttyport’address,
part_of(OB).port_speed’address,P_mode’address);

end Unmanaged-RSQ32_Port

Correspondmg C++ program
c-port_port(int *FD, char path [], int *port. speed int *P_mode)

Another way of accessing C++ global functions within Ada was to use the C-linkage
instead of the C++-linkage. The eztern “C” statement means that everything within the
scope of the brace-surrounded block is compiled by aC cbmbilef. With this approach, the
function was accesses through pragma INTERFACE within Ada. All ‘procedures to access
C++ functions within Ada are basically the same as that of the C++-linkage except for the

encoded function name.

pragma INTERFACE (C, c.port_open);
pragma INTERFACE_NAME (c_port_open, C.SUBP_PREFIX & “c_port-open”),

‘Corresponding C++ prcgram ‘
extern "C” c_port_port(int *FD, char path [, int *port_speed, int *P_.mode)

(
}

Stroustrup suggested the linkage from C++ to another language as follows: “I conjec-
ture that in most cases linkage from C++ to another language is best done simply by using a
common and fairly simple convention such as ‘C-linkage’ plus some standard library routines
and/or rules for argument passing, format conversion, etc., to avoid building knowledge of

non-standard calling conventions into C++ compilers” (4:6-9). As he suggested, the use
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of ‘C-linkage’ instead of C++-linkage made interfacing with Ada simpler for unique name

global C++ functions.

However, there are several problems with ‘C-linkage’ for overloading functions and
class members. The first is a safety problem with function overloading. ‘C-linkage’ basically
can not overload functions, since two functions with the same function name and different
signatures can cause serious side effects. The second, and more serious, problem with ‘C-
linkage’ was related to a class and its members. A linkage specification for classes applied
to only non-member functions and objects declared within it. There was no way of using
‘C-linkage’ for C++ classes and their members, which means that every linkage specification

for classes and their members should use C++ naming encoding techniques.

\ According to the C++ name encoding technique, names of classes was encoded as the

length of the name followed by the name itself to avoid terminators. For example, the member
function of joystick class, Set_Y_Normalize(int&), becomes Set_Y_Normalize_SJoystickF Ri.
The procedure of binding with this class member function was basically the same as that of

C++ global functions. The details within Ada are as follows:

procedure Set_Y _Normalize (N1 : in integer);

pragma INTERFACE (C,Set_Y -Normalize);
pragma INTERFACE_NAME(Set_Y_Normalize,”SetY Normalize_8Joystick FRi");

The main problem with this approach is that the instances of C++ classes are not
exported from C++ to Ada. That is, Ada could not instantiate the C++ class from within
Ada because class definition in C++ does not cause any memory to be allocated. Memory

is allocated for a class with the definition of each class object.

At first, an intermediate C routine which transfers C++ class structure to Ada was
tried. The problem was the same as with Ada’s case. Neither Ada nor C can export C++
class data structures to create inétances of C++ classes. One possible way of exploiting a
class library from Ada was to use pointers to class members and itself, which was the first

approach taken. It seemed possible because we were able to create porallel data structures
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corfesponding to pointers of class data members and declare subprograms corresponding to

class function members according to the C++ naming encoding rules. In C++, a pointer
to an object of a class points to the first byte of that region of memory. The C+4 compiler
turns a call of 2 member function into an “ordinary” function call with an extra argument;

that extra argument is a pointer to the object for which the member function is called (4:5-2).

For example, a simple class Joystick:

class Joystick {
int x,y,butl,but2,but3;
void read_joyst_ick(int x,int y,int butl, int but2, int but3);

5
A call of the member function Joystick::read_joystick:

-Joystick *ptrjoystick; —pointer to Joystick ciass
ptrjoystick=>read_joystick(x,y,but1,but2,but3);

is transformed by the compiler into an “ordinary function call”:
read_joystick_F8Joystick(ptrjoystick,x,y,butl,but2,but3);

From the above ordinary function' call, Ada may be able to access individual C++

class members through another intermediate C++ global function which just creates an

instance of a class. However, we were not able to exploit class members within Ada from

the C++ class library. Later, we found out there was no pointer to a class member under

C++ compiler version 2.0

Another way of exploiting the C++ classes library was to build a C4++ main function
which instantiates the classes and invokes the member functions. Then Ada can access the
C++ main function directly through Ada pragma INTERFACE. Within C+4 main, object
attributes (parameters) are passed to the Ada routine by calling Ada subprograms. For

example, the Ada main program calls the C-++ main program just like calling the C++
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- global functions. And the C++ main program passes object data members as parameters

by invoking the Ada subprogram within the Ada main program. ' -

procedure joyadatest is
procedure joyt;
pragma interface (C, joyt);
pragma interface_.name (joyt,”joy__-Fv”);
procedure getdata( x.val : in integer;
y-val : in integer;
but_1 : in integer;
but_2 : in integer;
but_3 : in integer;
flag : in integer);
pragma EXTERNAL (C, getdata);
pragma EXTERNAL NAME (getdata, C_SUBP_PREFIX & "givedata__FiN51");
procedure getdata(x-val : in integer; —
y-val : in integer;
but.1 : in integer
but_2 : in integer; e
but_3 : in integer;
flag : in integer) is
begin
—perform something s
end getdata;
begin
joyt;
end;

C++ program
extern "C” ' ‘ \

{

int x_val = 0; "‘\

‘ other declarations \ 5
) ,
extern givedata (int, int, int, int, int, int); Y
Joystick *ptr; Y

joy()

{
Joystick jstick(Port::port_four); ’ !
ptr = &jstick; |
ptr=>Set_Y_Normalize(TRUE);
ptr=>Set.Y _Resolution(10);
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while ((!(but_1)))

flag = jstick.Read_Joystick(&x_val, &y_val, &but_1, &but_2, &but_3);
givedata(x_val,y_Val,but_l,but_2,but-3,ﬂag);

)

For the Adawrapper class, we first tried to replace DISTPORT class with an Ada

routine, because its only function is to create a PORT READER class object and call the read
method. However, we couldn’t find the way of directly exploiting a class library within Ada.

The Adawrapper was needed to access C++ class DISTPORT. Actually the DISTPORT was

the main program that instantiates j class ‘Port Reader’, then runs on a remote machine. The

DISTPORT was invoked by passin

the parameters, which are the command line arguments
in argc and argv.
|
with system; use system; }
with language; use language; |
with command line; use command line;
procedure distportada is |
procedure distport( argc : in system.address;
argv : in Jystem.address);
pragma interface (C, distport);
pragma interface_name (distpért,C-SUBP-PREF IX & "main”);
begin }
distport(argc’address,argv’address);
end; l '

Appendix B includes some programs to help in the understanding of the example pro-
gram code explained in this chapter. All programs included in Appendix B were implemented

for developing the reusable joystick component for a flight simulator application domain.
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V. Summary and Conclusions

This chapter summarizes the research discussed in this thesis and also presents con-

clusions.

5.1 Summary

The objective of this thesis was to develop a set of reusable software components for
investigating and for ‘de'monstrating Ada’s applicability as an implementation language for

a reusable graphical software component.

A set of components, Reusable Joystick and RS232_Port, were developed for a flight
simulator. The OO approach was applied to the implementé.tion of these components using

~ the Ada programming language associated with C++ components.

The development of this thesis started with an analysis of the flight simulator domain.
The main purpose of the analysis phase was to identify potential reusable software compo-
nents. This came from a domain analysis that led to the identification of common objects,
operations, and structures. A class was a set of objects that share a common structure and
common behavior. Each object class was a candidate for a reusable component for the do-
main. This thesis identified low level inputs (Joystick and RS232 port classes) as a reusable

components implementation.

The next step was to analyze the joystick and the RS232 port classes and their re-
lationship among their class members in more detail. As a part of this, Ada binding to
C++/C was analyzed. For a complete Ada binding to a C++/C library and existing codes,

the following steps are necessary.

o Create parallel data types.
e Interface to external symbols (routine and data).

e Link to external libraries.
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Whenever access to routines or variables declared in the C++/C language is required, any
Ada variables used in conjunction with the subroutines or variables are compatible with the
C++4/C data representation. Once these parallel types have been established, the next step

is to gain access to external routines and data provided in the interface target language. This

is accomplished in a two stage procedure: first, equivalent Ada subprogram specifications

are written, and second, the linkage to the external routine and data is declared. The
first step is a simple mia,pping of external rontine and data_ names and parameters into an
Ada subprogram specification. The second step is accomplished through use of the pragma
IN TE'RFACE' and pragma IN TERFA CE_NAME. Linking the symbols built in Ada with the
external C++/C symbols is done by the Ada linker. |

Then design decisions were made and details were added to ﬁhe model to describe and
optimize the implementation. The main goal in designing and implementing each component
was ease of use and reusability (extensibility and maintainability were derived from designing
for reusability). The design of such reusable software components resulted in a design which
incorporates an interface and an implementation, resulting in the design of an abstraction.
Components that incorporate such characteristics are usually referred to as objects and are

said to be object-oriented. OOD of reusable Jeystick and RS232 Port components was used.

~ This model focused on reusability in C++. Redesign was required for adapting to the Ada

culture. The “Ada_wrapper” for wrapping C++ routines was added to surround the C++

class members and allow them to be gradually replaced later.

Several methods for building a well-engineered reusable component were considered.
Each alternative achieves this goal of building reusable components by demonstrating some

effect of Object-Oriented (OO) mechanisms through Ada language features.

The most direct representation of an object is a state encapsulating package exporting
a set of operations which can be used to access and update the object state. With this
Abstract State Machine (ASM) approach, the user is provided with a high-level interface to
the components. All access is through the operations provided in the interface. A generic

state-encapsulating package with this interface defines an object template from which mul-
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tiple structurally identical instances can be generated. However, generic packages are static
entities that can only be instantiated at compile time and thus do not support the con-
cept of dynamically instantiatable objects identified by references, let alone support for the

accompanying mechanisms of inheritance, polymorphism and dynamic binding.

The second method is to represent objects as tasks. This method can support dynam-
ically instantiatable classes and the notion of concurrency. It can also be used to realize a
form of dynamic binding. However, the problem with this method is that classes emulated
by task types in Ada cannot provide support for inheritance. Another problem is that they

cannot be library units.

In addition to the above two approaches, the notion of Abstract Data Type (ADT)
can be used for representing objects and classes. In this method, an object is defined by
a package exporting an ADT. This approach differs from the ASM approach in that the
interface consists of both the predefined set of operations and the data structure itself,
but the state of the data is not captured. The package exporting the type and associated
methods does not itself represent an object but rather variables of the exported data type,
and the package defining the ADT corresponds more to a class, therefore, than to an object.
The reference semantics and the dynamically instantiated objects are provided by making
the exported type an access type rather than a static type. The main advantage cf this
method is that it provides limited support for two important mechanisms associated with
classes/objects, inheritance and polymorphism. However, it introduces limitations such as
type incompatibility by deriving from the parent types, narrowing their applicakility by
subtyping, recompilation of the original abstraction by breaking the original abstraction,

and complicated generic parameters.

Another method for representing classes and objects is to use Ada generic units to
provide components which are tailorable to user-defined types. It provides flexibility while
simplifying use. Types and operations on the types are defined, and the types can then

be used to instantiate the generics, and the operations will get pulled along. The major




advantage of this approach is that it incorporates strong typing and is flexible. However, the

user weuld need to supply a large number of generic pa.rarheters.

Ada 9X was considered as the best solution since it provides support for the paradigm
of object-oriented programming (OOP) through powerful mechahisms for variant and class-
wide progra.mming and child library units. All limitations with the Ada 83 ADT approach
can be addressed with Ada 9X. With Ada 9X, the programmer can use tagged type extension
é,nd subprogram disp‘atch to simplify the system. Tagged types offer Ada programiners a
mechanism for single inlieritance. For a type T, the class-wide type T’Class was introduced.
The set of values of T'Class is the union of the sets of values of T and all of its derivatives.
The type tag, associated with each value of a tagged class-wide type, is the basis for adding

run-time polymorphisrﬁ in Ada 9X. However, an Ada 9X compiler was not available.

The last alternative considered was an ADT with a common class approach. The
main difference between this approach and the simple ADT approach is that the state of
the object is not represented by a single record but by a linked lict of records. Each node
in the list stores the state variables added by its ancestors. In this approach, all objects
in the component are represented by state lists whose first node is a record of type Con-
mon_Object.State, referenced by an access variable of type Common_Object.Object. These
state lists corresponding to descendants of Comrﬁon-Object.Objcct are composed of a Com-
mon.Object.State record followed by records holding the state variable introduced by each
of the classes in the inheritance chain. Since the first node of every Ttate list is of the type
Common.Object.State, all objects in the component are ceferenced by access values of the
same Ada type “Common_Object.Object”. This was the basic strategy for overcoming the
incompatibility of the polymorphism, inheritance mechanism and dyn}*;mmic binding without
introducing type incompatibility and recompilation while preserving \Ada’s strong typing
mechanism. The only problem with this approach is that it introduces unnecessary Com-
mon.Object classes and attributes for making each class link. For example, all classes are
inherited from the Common_Object class, and have two additional attributes - Offspring_no

and He:r which are not essential to them.




This ADT with common class approach was selected for implementation. The inheri-
tance and polymorphism mechanisms were accomplished through the linked list which has a
common object access type. All objects in the system are of type Common._Object.State ref-
erenced by an access variable of type Cemmon_Object. Object. Not only does t.his mechanism
solve the problem of polvmorphism, But it also means that there are no typing obstacles to
the incremental introduction of new subclasses, since instances of these are also represented

by state lists referenced by accessed variables of iype Common.Objeci.Object.

For example, if the HEIR field of the first node is ‘null’, the iist represents an instance
of class Conimon_Object; if not, then it corresponds to a descendant of Common_Object and

therefore can be supplied as a parameter to a method of a descendant class.

In a linear inheritance hierarchy, the process of adding nodes to the list is repeated for
each new addition to tl ¢ hierarchy. As illustrated in the previous chapter, the state of an
Unmanaged_RS232_Port object is stored as a linked list of three nodes. The Ada package
into which Unmanaged_RS232_Port is translated, however, is completely independent of the
record types used to generate the first two nodes in the list. The Unmanaged_RS232_Port
structure is not affected in any way by that of the package Port corresponding to its parent
class. The only place in which reference is made to‘this package is in the implementation of
the Create and Part.Of. The key benefit of this mechanism is in the structure of these two

functions.

Ada’s features for defining the bodies of methods in physicdlly separate subunits pro-
vides an elegant mechanism of dynamic binding. It permits the amount of code that has to
be updated to cater to the introduction of new method versions to be limited to a single
procedure body. None of the subprograms declared in the package specification actually
implements the corresponding method directly, however. This job is, in fact, performed by
an additional set of methods declared in a package SELF contained in the body of the main
package. The bodies of the visible subprograms declared in the specification of the main
package are contained in ‘separate’ units and use the subprograms defined in inner package

SELF to implement the original method. The great advantage of this approach is that all the
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modification and recompilation needed to cater to the new version is limited to the ‘separate’

subprograms of the methods concerned.

The Adawrapper class was intended as a wrapper class, in which C++ class members
of data and function were interfaced with Ada code. Basically, two approaches were taken;
one through the C;Iinkage (e.g., extern "C” { } which says that everything within the scope
of the brace-surrounded block is compiled by a C compiler), and the other through the

type-safe linkage and name encoding techniques — C++-Linkage.

Ohe way of accessing C+-- global functions within Ada was to use the C-linkage instead
of the C++-linkage. Thé extern “C” statement says that everything within the scope of the
brace-surrounded block is compiled by a C compi]er.' With this approach, the function was
accessed through pragma INTERFACE within Ada. All procedures to access C++ functions
withifx Ada are basically the same as that of the C++-linkage éxcépt. for encoded functions.
The use of ‘C-linkage’ made Ada interfaéing witﬁ C++ simple for uni(iuely named global

| C++ functions. |

However, there are several problems with ‘C-linkage’ for overloading functions and
class members. The first is a safety problem with function overloading. ‘C-linkage’ basically
cannot overload functions, since two functions with the same function name and different
signatures can cause vserious side effects. The second, and more serious, problem with ‘C-
linkage’ was related to a class and its membefs. A linkage specification for classes applied
to only non-mémber functions and objects declared within it. There was no way of using

_‘C-linkage’ for C+-- classes and their members, which means that every linkage specification

for classes and their members should use C++ nei.ing encoding techniques.

Another way of accessing C++ functions was to use “C++ linkage”. A global func-
tion name is encoded by appending __F followed by the signature so that, for example,
Read_Packet(int, char, float) becomes Read.Packet__Ficf since, within Ada, this fuﬁction
should be called the encoded name ‘Read_Packet__Ficf’. Names of classes are encoded

as the length of the name followed by the name itself to avoid terminators. For exam-
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ple, the member function of the joystick class, Joystick::Set.Y Normalize(int&) becomes
Set.Y _Normalize_8Joystick FRi. The procedure of binding with this class member function

was basically the same as that of C++ global functions.

The main problem with using C4++ linkage was that the instances of C++ classes are
‘not exported from C++ to Ada. That is, Ada could not instantiate the C++ class from
within Ada. Neither Ada nor C export C++ class data structures to create instances of
C++ classes. One way of exploiting Cv++ class libraries was to build a C++ main function
which instantiated the classes; then Ada accessed the C++ main function Adirlectly through

Ada pragma INTERFACE.

5.2 Conclusions

One of the objectives of this thesis was to build a set of reusable ﬁight simulator
| components in Ada using an OO approach. I wanted to end up with joystick and RS232 port
components that were reusable, maintainable and extensible. Object-oriented techniques
with Ada promised to provide a way to achieve these goals. I believe that these goals have

 been accomplished.

The use of Ada, however, couldn’t itself guarantee that a component would be readily
reusable. There were a number of important design guidelires that can greatly enhance the
reusability of components. These guidelines relate to the design and structure of reusable

components which were provided by the OO approach.

However, there were limitations with Ada 83 such as type incompatibility and recom-
pilation, or introduction of attributes which are not essential to an object. Ada 9X addressed

these limitations.

Another objective of this thesis was to build a set of reusable Ada software compouents
associated with C4++ routines. I wanted to end up with the advanced Ada ianguage features

that could access the C++ library. However, it was not possible to export members of classes

and objects from class libraries within Ada. It was possible to access C++ global functions
..“.A .—:/, e . ; ;o i r\L o [ P ; o
-
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and user-defined data types, but not user-defined classes. However, one feasible way was to
use “ordinary’ function calls with an extra argument; that extra argument is a pointer to

the object for which the class member function is called.

It is currently practical to use Ada for graphics applications if graphics libraries are
written in C rather than C4++4. However, it is not practical to use Ada for C++ class graphics

libraries.

5.8 Recommendations

There are many different areas of the design and implementation techiiques to build
reusable graphics software components that could be extended and improved. This thesis
work does not provide the best solution to the question “hoiv to develop reusable software
révnponrnts in Ada which are ussociated with a C++ class library ?7, that is, it is not suitable
for a “cookbook™ approach. This thesis has addressed sevcral ways of buill(ling a rcusabk

graphics software component in Ada associated with C++ routines using an QO approach.

As Ada 9X translators becomes available, this work can be implemented much more
cleanIy and directly in Ada 9X. To best address reusability with respect to interfacing with
C++, Ada 9X implementations should add interface facilities which enable the Ada 9X
translator to chbose a storage layout for objects of the named types and user-defineua classes
in C++ to match the representation that the C++ compiler uses. In addition, it must
be possible for an Ada object of any of the types, including storage layout for objects of
user-defined classes in C++, to be passed as a parameter to a C++ function with the

corresponding formal parameter.
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Appendiz A. Joystick and RS232Port Design
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Figure A.l. Flight Simulator Composition
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Figure A.2. Joystick and RS232 Port Class Hierarchy
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Figure A.3. Common_Object Class
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Appendiz B. Example Source Program List

\\ FTTL] LI L 1
\\File name : C_Port_Open.cc .
\\Prrpose : It reset the variables in the taermio structure to represents

\\ the way in shich you wish the port to behave. ~ .sn open thee
\\ port. P
\\ 258 1 Py

extern "C" {

#include <sys/termio.h>

int ioctl (int, int, chare);

}

#include <atdio.h>

#include <fcntl.h>

#include <string.h>

extern "C" void c_port_open(int *FD, char path[],int #port_speed, int #P_mode)

{
int port_FD;
| struct termio tty;
) if ((port_FD = open{path, O_RDWR | O_EDELAY)) == -1)
fprintf(stderr,"Cannot open port.\n");
| fprintf(stderr,"Most likely cause is that ponissions ﬁ.lo \n");
- }
} else
i {
| ioctl(port.FD, TCGETA, (char ¢) &tty);
- /* Now reset the variables in the termio structure to reprcsent the way
in which you wish the port to behave */
I+ :

¢ Set the port up for:
Hang up on last close
eight bits

local line

enable receiver

enable signals

user specified baud rate

L 2K 2R 2R BN BN

~ */
. it (sP_mode == 0) /» input mode is raw */

fprintf(stderr,"Rav mode\n");

/¢ These flags set up the port for “raw" input. This allows us to
grab whatever input is present in the read queue regardless of
whether the device is done sending . full packet or not */

; tty.c_cflag = BUPCL | CS8 | CLOCAL | CREAD | sport. lpood

tty.c.1flag = O;
tty.c_iflag = IGNBRK;
tty.c_oflag = O;
‘ tty.c.cc[VMIN] = O;
| tty.ccc[VTIME] = O;
| }
| else
{
/* This sets up the port for “canonical” input. The read queune will not
make a packet available to the read routine until a <cr><1f> is
Teceived. */
fprintf(stderr,"Port_mode is canonical\n");

tyy.c_cflag = HUPCL | CS8 | CREAD | sport_speed | CLOCAL;

tty.c_1flag = ISIG | ICANON;
tty.c_iflag = IGNBRK;
}

/* Bow set up the port using the TCSETA call to ioctl.
port and flushes the output queue ¢/

This resets the

| B.1

e,
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ioctl(port_FD, TCSETAF, (char #) Rtty);
}

sFD = port_FD;

}

--“.‘t‘.‘.““.“#ttt““.“‘.ﬂtt"t““t"‘.# * *heNES
‘ == CLASS : Port
‘ == PURPOSE: This is an abstract class used to implement RS232 ports.
| -- FILENANE: port.a

~- METHGDS: create -- Constructor, common_view_of, port_vieu_of,part;of,

- common_view_of, port_view_of.
- Read, Write.To_Port, Open_Port, Close_Port, Flus* _Queue
- are all virtual functijons to he implemented by lower level
- classes.
- Get_Port_Open - returns the only attribute of Port.
-~ DESIGN DECISIOAS: This standardizes the protocol of the Port classes.
e e 49 T T P P T PR L

with common_object;
with unchecked_conversion;
package Port is

type port_numbers 1s (port_one, port_two, port_three, port_four,
port_five, port_six, port_sevan, port_eight);
type port_speed_spec is (b19200, b9€00, 1200, b300);
type port_input_mode is (raw, canonical);
type port_comm_type is (terminal, mcdem, flow_control);
type variable;
type state is access variable;
type variable is record
port_open : boolean; --flags if po~t is open
offspring_no : mnatural := 0; :
heir : common_object.object;
end record;

=--This functior Is an instantiation of the generic
~--fuanction UNCHECKED_.CONVERSION converting the type Common_Object
-==to access valies of type.
function cormon_view_of is new
unchecked_corversion (source => port.stata,
target => common_object.object);

---This function is an instantiation of the generic
-~~function URCHECKED_CONVERSION converting access values of type
~=-port.state to the type Common_Object.
function port_view_of is new
unchecked_conversion (source => common_object.object,
target => port.state);

===It performs the inverse UNCHECKED_CONVERSIDN to the CREATE
~-~function. Given a reference¢ of type Common_Object.Object,
=-=it returns a reference of the access type defined its package.
function part_of (0B : in common_object.object) return state;

-=-The purpose of this function 1s linking the two nodes together
-=--transparently. It enable the heir field of the first mode to
~--point to a record of the other ncde, and make them reference
=== of type Common_Object.Object.
function Create (offspring_no : in natural := 0)

retnrn common_object.object;

---This function returns the only attribute of Port.

function Get_Port_Open (0B : in common_object.object)
return boolean;
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function Oper_Port (OB : in common_object.object) return boolean;
function Close_Port (0B : in common_object.object) return boolean;
procedure Flush_Queue (0B : in common_object .object) ;

procedure Delete_Unmanaged RS232_Port (OB : in corwon_object.object) ;

procedure Read_From_Port(0B : in common_odbject.object;
Buffer : in out string;
num_chars_to_read : in integer;
coun* : out integer);
procedure ¥Write_To_Port(0B ' : in common_object.object;
buffer : in out character;
num_chars_to_write : in integer);

UNDER_FLOW : exception;
end port;

package body Port is
package self is

function Open_Port (OB : in common_object.object)
return boolean;

function Closo_Port (0B : in common_object.object)
return boolean;

procedure Flu,h_Queue (0B : in common_object.object);

procadure Delete_Unmanaged_RS232_Port (0B : in common_object.object);

procedure Read_From_Port(CB : ir comman_object.object;
Buffer : in out string;
num_chars_to_read : in integer;
count ) : out integer);

procedure Write_To_Port(08 tin common_object.object;
buffer : in out charactar;
num_chars_to_write : in integer);

package body self is
function Open_Port (OB : in common_object.object)
return boolean is
begin
if port.part_.of(0B) = null then
raise UBDER_FLOW;
else
roturn false;
end if;
end;
function Close_Port (0B : in common_object.object)
return boolean is
begin
if port.part_of(0B) = null then
raise USDER_FLOV;

else
return false;
end if;
end;
procedure Flush_Queue (0B : in common_object.object) is
hagin
raise UNDER_FLOW;
end;
procedure Delete_Unmanaged RS232_Port (0B : in common_object.object) is
begin
raise USDER_FLOW;
ond;

end self;




procedure Read_From_P- : in common_object.object;

fer : in out string;
wum_chars_to_read : in integer;
count : out integer) is .
begin
raise UNDER_FLOW;
end;
procedure Write_To_Port(03 ¢ in comnen_object.object;
buffer : in out character;
num chars to_write : in integer) is
begin
raice UNDER_FLOW;
end;
and self;
function part_of (OB : in common_object.object) return state is
begin
return port_view_of(0B.heir);
end;

function create (offspring_no : in natural := 0)
return common_object.object is
com_obj : common_object.object;
port_obj : state;
begin
port_obj := new variable;
port_obj.offspring_no := offspring_no;
port_obj.heir := null;
com_obj := common_.object.create(1);
com_obj.heir := common_view_of(port_obj);
return com_obj;
end;
function Get_Port_Open (0B : in common_objec*.objec:)
return boolean is
tem_0B : atate;
begin
tem 0B := new variable;
tes.0B := part_of(0B);
return tem_CB.port_open;
end Get Port_Open;
fuaction Op.a_Port (0B : in common_object.object)
return boolean is separate;
function Close_Port (0B : in common_object.object)
return boolean is separate;
procedure Flush_Queue (0B : in common_object.object)
is separate;
procedure Delete Unmanaged_RS232_Port (0B : in common_object.object)
is separate;

procedure Read_From_Port (0B : in common_object.object;

Buffer ¢ in out string;
num_chars_to_read : in integer;
count : out integer)
is separate;
procedure Write_To_Port (0B : in common_object.object;
buffer : in ont character;
num_chars_to_write : in integer)
is separate;
end Port;
s LT e e LT senn
#%s File neme : Separate_Read_From_PoIt.ass#sssss4asaa84502as0dsss
¢+ Purpose : This Read_From_Port method was separate fron main *
s Port package to implement rethod selection sell ats
hadd run-time. This reduces recompilation. scssssssssres

A X ERE 2L e L2 1
with Unmanaged_RS232_Port;
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separate (Port)
procedure Read_From Port

({1 ] : 4m commom_object.object;
Suffer : in ont atriag;
nem_chars_te_read : in integer;

count : out iateger) is

begin .
if pert.part_of (0B  »-1) them
self Read _From, ' +.:0R Buffer, nwm_chars_to_read,count);
else
Usmanaged RS2, ‘ort.Read_From_ Port )
(0B ,Buffer,num_chars_to_read,comnt);
ond Af; S
ond;

ve sseese COOU0000RE00000000000E000000000000038000000800000000¢
-~ CLASS: Unmanaged RS$232 Port » :
== PURPOSE: This allovs the user to access am R$232 port. This does no
== checking of curreat port usage.

«= INERRITED FROM: Port
=« FILEBARE: uRS232port_s.a
~= RETRODS: Create_of, part_of, Common_Viev_of, Unmanaged _RS5232 Port_view,

.- Read_From_Port :
- Write_ Yo _Port

.- - Opem_Pert

.- Clese_Port

-- Flush_Quene - clears the quens for the pert

== DESIGE DECISIOBS: Differeat types of ports were created to give the user

== & vange of different types of perte and use them all ia the same way.
000000 000000000000000000000000000000000000000000000000000000000004¢0004000000

with port; use pert; :
with system;

with language; use language;

with tty;

with on_files;

eith common_ebject;

with unchecked_coaversion;
‘package Unmanaged_RS$232_Port {s

type variable;
type state is access variadle;

type variadle is record

port. rFo : oa_files.fila_descriptor; =< pert file descriptor number
pert_type : pert.pert_comm_type; == terminal, modem or flow control
port_number : pert.pert_numbers; ° == port number of device (minus 1)
tty.type 1 tty.termie; == port ssttings

pert.mode : pert.pert_input_mode; == port mode

pert. speed : integer;

offepring_ne : natural := 0;

heir : common_.odject ebject;
ond recerd;

===This functien is an instantiation of the gemeric
==~function URCEECKED COWVERSIOB comverting the type Cemaon_ Object
===te access values of type.
function common_view_of is new
uachecked_conversiea (sesrce => state,
target ®> common.edject.ebject);
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=-=This function is an instantiation of the generic
~=~function UNCHAECKED_CORVERSION converting access values of type
==eport.state to the type Common_Object.
functioa Unmanaged RS232_Port_viev_of is new
unchecked_conversion (source => common_object.object,
target => state);

~==]t performs the inverse UNCHECKED.CONVERSION to the CREATE
=«~function. 4iven a reference of type Common_Object.Object,
===it returns a reference of the access type defined its package.
functioa part_of (0B : in common_object.ocbject) retura state;

==-The purpose of this function is linking the two nodes togethe -
===transparently. It enicbdle the heir field of the first node to
==-point to a record of the other node, and make theam reference
=== of type Common_Ubject.Object.

function create_of (

port_num : in port.port_numbers;
speed : in port.port_speed_spec;
mode : in port.port_input_mode;

port.c.type : in port.port_comm_type;
offspring.no : in natural := 0)

return common_object.object;

==«The purpose of function is to open the system ports.

e==It performs reseting the variables in the termio structure to represent
==«the way in which you wish the port to behave through C++ routine called

~e=tlc_port_open”.
function Open_Port (0B : 14, common_odject.odject) return boolean;
procedure c_port_open(port_FD_num : in system.address;

ttyport : in system.address;
port_speed : in system.address;
P_mode : in system.address);

~«=The purpose of function is to close the system ports.
fuaction Close_Port (0B : im common_object.object) return boolean;

~~~The purpose of function is clear the queue for the port.
procedure Flush_Queue (0B : in common_object.object) ;

~==~The purpose of function is delete the odject. :
procedure Delete_Unmanaged_RS232_Port (0B : in common_object.object) ;

~==The purpose of function is read a data availadle on the system p'ort.

procedure Read_Fron_Port(0B i in common_object.object;
Buffer ¢ in out string; ’
num_chars_to_read : in integer;
count : out integer);

==~The purpose of function is set & specific port mode.

precedure Write_To_Port (0B i in common_object.object;
bduffer : im out character;
num_chars_to_srite : in integer);

pragns INTERFACE( C, c.port_open);
pragma INTERFACE_BANK( c_port_open, C_SUBP_PREFIX & “c_port_open");

ond Unmanaged R3232_Port;

with text _io; vae text_io;
with sty;
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with os_files; " use os_files;
with unsigned_types; use unsigned_types;
with foctl;
with unix;
package body Unmanaged_RS232_Port is
package INT_I0 is new integer_io(integer);
use INT_IO;
package port_FD_ID is nev integer_io(os_files.file ducriptor)
use port_FD_IO;
package port_numbers_io is new enumeration_io(port.port_numbers);
use port_numbers_io;
package port_comm_type_io is new onuloution_io(port port_comm_type);
use port_comm_type_io;
package port_input_mode_io is new enumeration_io(port.port. input _mode) ;
use port_input_mode_io;

=~ BETHOD: Part_of
~= PURPOSE: Given OB, it returns a reference of the access typa defined

- its package
function part_of (0B : in common_object.object) return state is
begin )
return Unmanaged RS232_Port_view_of(port.part_of(0B).heir);
onq;
LA A S RS2 LTI TLELILI Y] .

== KETHOD: Create_of
== PURPOSE: This sets up ¢he port according to th- uur’l lpociﬂcntionn

LI LS Ll Lt

function create_of (

port_num : in port.port_numbers;
speed : in port.port_speed_spec;
mode : in port.port_input_mode;
port.c.type : im port.port_cowm_type;

offspring_no : in natural := 0)
return common_object.object is
com_object . common_obiect.object;
rs232port : Unmanaged _RS232_Port.state;
begin
r8232port :* new Unmanaged_RS232_Port.variable;
r8232port.offspring_no := offspring_no;
r8232port.heir := null;
r8232port.port _mode := mode;
r3232port.port_type := port_c_type;
== set port number to one less than actual in order to make array access
== easier. Set port type for hardware handshaking that must be done
rs232port.port_number := port _num;
== Load tl‘? spesd variable according to the user’s request and using
== the nylbol:lc constants fouud in termio.h. Be advised that the
== dip nitchu on the bottom of the device must be set for the speed you
== want since this can’t de set by the computer. This -only sets how fast
== the RS232 PORT will receive stuff. .
case speediis
when port [b19200 =>
r8232port.port_speed := integer(tty.B19200);
whea port. =
nzaﬂprt .port_speed := integer(tty.B9600);
when port.b1200 => :
nzszpktt.port-lpud :m integer(tty.B1200);

when port. ->
T8232pdrt.port._speed :* integer(tty.B300);
ond case; )

com_object := port.create(1);
port.part_of(com_object) .heir := common_view.of(rs232port);
port.part_of(com_ object) .port_open := FALSE;




return com_object;

end Create_of;
L LT T T T T T T Y T T T TP T R T TP r vy
== METHOD: Open_Port
== PURPOSE: Given the settings created when the object was instantiated, this
== does the UNIX calls to set up and open the RS232 port.
LT L L T L Y P T P Y P
function Open_Port (0B : in common_object.object) return boolean is

port_FD_num : integer; :

ttyport ¢ string(1..11);
P_mode " i integer;
T : boolean := True;

begin ---main open_port
if not Port.get_Port_Open(0B) then
ttyport(1..8) := “/dev/tty";
it part_of(0B).port.type = port.terminal then ~- port type is terminal
ttyport(9) := ’d?;
text_io.put_line("ttyport(9) = d");
elsif part_of(0B).port_type = port.modem then -~ port type is modem
ttyport(9) := 'm>;
text_io.put_line("ttyport(9) = m");
elsif part_of(0B).port_type = flow_control then -- port type is flow comtrol
ttyport(9) := £,
text_io.put_line("ttyport(9) = £");
end if;
ttyport(10) := character’val(port.port_numbers’pos
(part_of(0B) .port_number) + 1 + charactex’pos(’0’));
ttyport(11) := ascii.nul;
==Call the C program that calls the system calls;
P_mode := port.port_input_mode’pos(part_of(0B).port_modae);
c.port_open(port_FD_num’address,ttyport’address,
part_of(0B) .port_speed’address,P_mode’address);
part_of(0B) .port_FD :=
os_files.file_descriptor’(os_files.file_descriptor(port_FD_num));
if port_FD_num /= -1 then
port.part_of(0B) .port_open := TRUE;
. end if;
end if;
return port.Get_Port_Open(0B);
end Open_Port;

== HETHOD: Close_Port
== PURPOSE: Closes the port (if it vas open) and releases the UNIX fd.
sesnne
function Close_Port (0B : in commonm.object.object) return boolean is
begin
\ if port.Get_Port_Open(0B) then
] port.part_of(0B) .port_open := FALSE;
! os_files.close(part_of (OB) .port_FD);
\ end if;
return port.Get_Port_Open(0B);
end Close_Port;

) L T P T
=+ METBOD: Flash_Queue
== PURPOSE: Clear the queue

procedure Flush_Queus (0B : in common_object.object) is
result : integer := 0;
gin
if ioctl.ioctl(part_of(0B).port.FD,
ioctl.TCFLSH,result ’address) = ~1 then
text_io.put_line(“fail to flush the buffer");
end if;
end Flush_Queue;




200NN ISOIES . e »
=& METHOD: Delete_Unmanaged RS232_Port o
== PURPOSE: Delete object
SEIBBERRILRNNNIOES 2 .
procedure Delete_Unmanaged_RS232_Port (0B : in common_object.object) is
close_status : boolean;
tegin
close_status := Close_Port(0B);
end Delete _Unmanaged_RS232_Port;

PYT )

L1 2

~= METHOD: Read_From_Port

== PURPOSE:
L2 11 b e
procedure Read_From_Port(0B : in common_object.object;
Buffer : in out string;
aum_chars_to_read : in integer;
count : out  integer) is
T : string(l..num_chars_to_read + 1);
len : integer := T’last;
begin
T(1..len-1) := Buffer;
T(len) :» agcii.nul;

count := unix.read(part_of(0B).port FD, .

T’address, num_chars_to_read);
buffer := T(1..len - 1); .
end Read_From_Port;

== METHOD: procedure Write_To_Port
~= PURPOSE: '
procedure Write_To_Port(0B :im common_object.object;
buffer : in out character;
num_chars_to.write : in integer) is
begin : .

os_files.write(part_of(0B).port_FD,
) buffer’address, num_chars_to_urite);
end Write_To_Pors;
end Unmanaged_RS232_Port;
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